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Motivation: The regions of the genome involved in many complex genetic diseases remain unknown. There are significant interactions within the genome that greatly influence the phenotype of an
organism, specifically between single nucleotide polymorphisms (SNPs) and gene expression levels. The detection of these interactions is difficult due to the huge set of SNPs and genes and the small
marginal effect of each marker. Our goal is to identify the meaningful SNP-Phenotype interactions and SNP-Gene-Phenotype interactions for both synthetic and real data sets.
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Part I: SNP - Phenotype Interactions Part ll: SNP - Gene - Phenotype Interactions
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Analysis of Evaluation Results

If the method is more sensitive to SNPs
with small effects, it will result in:

' High recall
‘ Low precision

If the method avoids overfitting the
model, it will result in:
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