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Preface

There is, I think, a gap between what many students learn in their first course in
formal logic, and what they are expected to know for their second. While courses in
mathematical logic with metalogical components often cast only the barest glance
at mathematical induction or even the very idea of reasoning from definitions, a first
course may also leave these untreated, and fail explicitly to lay down the definitions
upon which the second course is based. The aim of this text is to integrate material
from these courses and, in particular, to make serious mathematical logic accessible
to students I teach. The first parts introduce classical symbolic logic as appropriate
for beginning students; the last parts build to Gödel’s adequacy and incompleteness
results. A distinctive feature of the last section is a complete development of Gödel’s
second incompleteness theorem.

Accessibility, in this case, includes components which serve to locate this text
among others: First, assumptions about background knowledge are minimal. I do
not assume particular content about computer science, or about mathematics much
beyond high school algebra. Officially, everything is introduced from the ground up.
No doubt, the material requires a certain sophistication — which one might acquire
from other courses in critical reasoning, mathematics or computer science. But the
requirement does not extend to particular contents from any of these areas.

Second, I aim to build skills, and to keep conceptual distance for different applica-
tions of ‘so’ relatively short. Authors of books that are completely correct and precise
may assume skills and require readers to recognize connections not fully explicit.
It may be that this accounts for some of the reputed difficulty of the material. The
results are often elegant. But this can exclude a class of students capable of grasping
and benefiting from the material, if only it is adequately explained. Thus I attempt
explanations and examples to put the student at every stage in a position to understand
the next. In some cases, I attempt this by introducing relatively concrete methods for
reasoning. The methods are, no doubt, tedious or unnecessary for the experienced
logician. However, I have found that they are valued by students, insofar as students
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PREFACE ii

are presented with an occasion for success. These methods are not meant to wash over
or substitute for understanding details, but rather to expose and clarify them. Clarity,
beauty and power come, I think, by getting at details, rather than burying or ignoring
them.

Third, the discussion is ruthlessly directed at core results. Results may be rendered
inaccessible to students, who have many constraints on their time and schedules,
simply because the results would come up in, say, a second course rather than a first.
My idea is to exclude side topics and problems, and to go directly after (what I see as)
the core. One manifestation is the way definitions and results from earlier sections
feed into ones that follow. Thus simple integration is a benefit. Another is the way
predicate logic with identity is introduced as a whole in Part I. Though it is possible to
isolate sentential logic from the first parts of chapter 2 through chapter 7, and so to use
the text for separate treatments of sentential and predicate logic, the guiding idea is to
avoid repetition that would be associated with independent treatments for sentential
logic, or perhaps monadic predicate logic, the full predicate logic, and predicate logic
with identity.

Also (though it may suggest I am not so ruthless about extraneous material as
I would like to think), I try to offer some perspective about what is accomplished
along the way. In addition, this text may be of particular interest to those who have,
or desire, an exposure to natural deduction in formal logic. In this case, accessibility
arises from the nature of the system, and association with what has come before. In
the first part, I introduce both axiomatic and natural derivation systems; and in ??,
show how they are related.

There are different ways to organize a course around this text. For students who
are likely to complete the whole, the ideal is to proceed sequentially through the
text from beginning to end (but postponing chapter 3 until after chapter 6). Taken
as wholes, Part II depends on Part I; Parts ?? and ?? on Parts I and II. ?? is mostly
independent of ??. I am currently working within a sequence that isolates sentential
logic from quantificational logic, treating them in separate quarters, together covering
all of chapters 1 - 7 (except 3). A third course picks up leftover chapters from the first
two parts (3 and ??) with ??; and a fourth the leftover chapters from the first parts
with ??. Perhaps not the most efficient arrangement, but the best I have been able to
do with shifting student populations. Other organizations are possible!

A remark about chapter 7 especially for the instructor: By a formal system for
reasoning with semantic definitions, chapter 7 aims to leverage derivation skills from
earlier chapters to informal reasoning with definitions. I have had a difficult time
convincing instructors to try this material — and even been told flatly that these
skills “cannot be taught.” In my experience, this is false (and when I have been
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able to convince others to try the chapter, they have quickly seen its value). Perhaps
the difficulty is just that the strategy is unfamiliar. Of course, if one is presented
with students whose mathematical sophistication is sufficient for advanced work, it
is not necessary. But if, as is often the case especially for students in philosophy,
one obtains one’s mathematical sophistication from courses in logic, this chapter
is an important part of the bridge from earlier material to later. Additionally, the
chapter is an important “take-away” even for students who will not continue to later
material. The chapter closes an open question from chapter 4 — how it is possible to
demonstrate quantificational validity. But further, the ability to reason closely with
definitions is a skill from which students in (sentential or) predicate logic, even though
they never go on to formalize another sentence or do another derivation, will benefit
both in philosophy and more generally.

Another remark about the (long) sections ??, ?? and ??. These develop in PA
the “derivability conditions” for Gödel’s second theorem. They are perhaps for
enthusiasts. Still, in my experience many students are enthusiasts and, especially from
an introduction, benefit by seeing how the conditions are derived. There are different
ways to treat the sections. One might work through them in some detail. However,
even if you decide to pass them by, there is an advantage having a panorama at which
to wave and say “thus it is accomplished!”

Naturally, results in this book are not innovative. If there is anything original,
it is in presentation. Even here, I am greatly indebted to others, especially perhaps
Bergmann, Moor and Nelson, The Logic Book, Mendelson, Introduction to Mathemat-
ical Logic, and Smith, An Introduction to Gödel’s Theorems. I thank my first logic
teacher, G.J. Mattey, who communicated to me his love for the material. And I thank
especially my colleagues John Mumma and Darcy Otto for many helpful comments.
Hannah Baehr and Catlin Andrade made comments and produced answers to exercises
for certain parts. In addition I have received helpful feedback from Steve Johnson,
along with students in different logic classes at CSUSB. I welcome comments, and
expect that your sufferings will make it better still.

This text evolved over a number of years starting modestly from notes originally
provided as a supplement to other texts. It is now long (!) and perhaps best conceived
in separate volumes for Parts I and II and then Parts ?? and ??. With the addition of ??
it now complete. (But ??, which I rarely get to in teaching, remains a stub that could
be developed in different directions.) Most of the text is reasonably stable, though I
shall be surprised if I have not introduced errors in the last part both substantive and
otherwise.

I think this is fascinating material, and consider it great reward when students
respond “cool!” as they sometimes do. I hope you will have that response more than
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once along the way.

T.R.
Fall 2017
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Introductory

Symbolic logic is a tool for argument evaluation. In this part of the text we introduce
the basic elements of that tool. Those parts are represented in the following diagram.

Ordinary
Arguments

Symbolic
Language

Proof and
Validity

Truth and
Validity

Metalogical
Consideration

- �
�
���

@
@
@@R

@
@
@@R

�
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���

The starting point is ordinary arguments. Such arguments come in various forms and
contexts — from politics and ordinary living, to mathematics and philosophy. Here is
a classic, simple case.

(A)

All men are mortal.
Socrates is a man.

Socrates is mortal.

This argument has premises listed above a line, with a conclusion listed below. The
premises are supposed to demonstrate the conclusion. Here is another case which may
seem less simple.

(B)

If the maid did it, then it was done with a revolver only if it was done in the
parlor. But if the butler is innocent, then the maid did it unless it was done in
the parlor. The maid did it only if it was done with a revolver, while the butler
is guilty if it did happen in the parlor. So the butler is guilty.

It is fun to think about this; from the given evidence, it follows that the butler did it!
Here is an argument that is both controversial and significant.

2



PART I. THE ELEMENTS 3

(C)

There is evil. If god is good, then there is no evil unless god has morally
sufficient reasons for allowing it. If god is both omnipotent and omniscient,
then god does not have morally sufficient reasons for allowing evil. So god is
not good, omnipotent and omniscient.

A being is omnipotent if it is all-powerful, and omniscient if all-knowing. This is a
version of the famous “problem of evil” for traditional theism. It matters whether
the conclusion is true! Roughly, an argument is good if it does what it is supposed
to do, if its premises demonstrate the conclusion, and bad if they do not. So a theist
(someone who believes in god) may hold that (C) is a bad argument, but an atheist
(someone who does not believe in god) that it is good.

We begin in chapter 1 with an account of success for ordinary arguments (the
leftmost box). So we say what it is for an argument to be good or bad. This introduces
us to the fundamental notions of logical validity and logical soundness. These will
be our core concepts for argument evaluation. But just as it is one thing to know
what integrity is, and another to know whether someone has it, so it is one thing to
know what logical validity and logical soundness are, and another to know whether
arguments have them. In some cases, it may be obvious. But others are not so clear —
as, for example, cases (B) or (C) above, along with complex arguments in mathematics.
Thus symbolic logic is introduced as a sort of machine or tool to identify validity and
soundness.

This machine begins with certain symbolic representations of ordinary arguments
(the box second from the left). That is why it is symbolic logic. We introduce these
representations in chapter 2, and translate from ordinary arguments to the symbolic
representations in chapter 5. Once arguments have this symbolic representation, there
are different methods of operating upon them.

An account of truth and validity is developed for the symbolic representations
in chapter 4 and chapter 7 (the upper box). On this account, truth and validity are
associated with clearly defined criteria for their evaluation. And validity from this
upper box implies logical validity for the ordinary arguments that are symbolically
represented. Thus we obtain clearly defined criteria to identify the logical validity
of arguments we care about. Evaluation of validity for the butler and evil cases is
entirely routine given the methods from chapter 2, chapter 4 and chapter 5 — though
the soundness of (C) will remain controversial!

Accounts for proof and validity are developed for the symbolic representations in
chapter 3 and chapter 6 (the lower box). Again, on this account, proof and validity
are associated with clearly defined criteria for their evaluation. And validity from the
lower box implies logical validity for the ordinary arguments that are symbolically
represented. The result is another well-defined approach to the identification of
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logical validity. Evaluation of validity for the butler and evil cases is entirely routine
given the methods from, say, chapter 2, chapter 3 and chapter 5, or alternatively,
chapter 2, chapter 5 and chapter 6 — though, again, the soundness of (C) will remain
controversial.

These, then, are the elements of our logical “machine” — we start with the
fundamental notion of logical validity; then there are symbolic representations of
ordinary reasonings, along with approaches to evaluation from truth and validity, and
from proof and validity. These elements are developed in this part. In later parts
we turn to thinking about how these parts work together (the right-hand box). In
particular, we begin thinking how to reason about logic (Part II), demonstrate that the
same arguments come out valid by the truth method and by the proof method (??),
and establish limits on application of logic and computing to arithmetic (??). But first
we have to say what the elements are. And that is the task we set ourselves in this part.



Chapter 1

Logical Validity and Soundness

Symbolic logic is a tool or machine for the identification of argument goodness. It
makes sense to begin, however, not with the machine, but by saying something about
this argument goodness that the machinery is supposed to identify. That is the task of
this chapter.

But first, we need to say what an argument is. An argument is made up of
sentences one of which is taken to be supported by the others.

AR An argument is some sentences, one of which (the conclusion) is taken to be
supported by the remaining sentences (the premises).

(Important definitions are often offset and given a short name as above; then there
may be appeal to the definition by its name, in this case, ‘AR’.) So an argument has
premises which are taken to support a conclusion. Such support is often indicated by
words or phrases of the sort, ‘so’, ‘it follows’, ‘therefore’, or the like. We will typically
indicate the division by a simple line between premises and conclusion. Roughly, an
argument is good if the premises do what they are taken to do, if they actually support
the conclusion. An argument is bad if they do not accomplish what they are taken to
do, if they do not actually support the conclusion.

Logical validity and soundness correspond to different ways an argument can go
wrong. Consider the following two arguments:

(A)

Only citizens can vote
Hannah is a citizen

Hannah can vote

(B)

All citizens can vote
Hannah is a citizen

Hannah can vote

5



CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 6

The line divides premises from conclusion, indicating that the premises are supposed
to support the conclusion. Thus these are arguments. But these arguments go wrong
in different ways. The premises of argument (A) are true; as a matter of fact, only
citizens can vote, and Hannah (my daughter) is a citizen. But she cannot vote; she
is not old enough. So the conclusion is false. Thus, in argument (A), the relation
between the premises and the conclusion is defective. Even though the premises
are true, there is no guarantee that the conclusion is true as well. We will say that
this argument is logically invalid. In contrast, argument (B) is logically valid. If its
premises were true, the conclusion would be true as well. So the relation between the
premises and conclusion is not defective. The problem with this argument is that the
premises are not true — not all citizens can vote. So argument (B) is defective, but in
a different way. We will say that it is logically unsound.

The task of this chapter is to define and explain these notions of logical validity
and soundness. I begin with some preliminary notions, then turn to official definitions
of logical validity and soundness, and finally to some consequences of the definitions.

1.1 Consistent Stories

Given a certain notion of a possible or consistent story, it is easy to state definitions
for logical validity and soundness. So I begin by identifying the kind of stories that
matter. Then we will be in a position to state the definitions, and apply them in some
simple cases.

Let us begin with the observation that there are different sorts of possibility.
Consider, say, “Hannah could make it in the WNBA.” This seems true. She is
reasonably athletic, and if she were to devote herself to basketball over the next few
years, she might very well make it in the WNBA. But wait! Hannah is only a kid —
she rarely gets the ball even to the rim from the top of the key — so there is no way
she could make it in the WNBA. So she both could and could not make it. But this
cannot be right! What is going on? Here is a plausible explanation: Different sorts
of possibility are involved. When we hold fixed current abilities, we are inclined to
say there is no way she could make it. When we hold fixed only general physical
characteristics, and allow for development, it is natural to say that she might. The
scope of what is possible varies with whatever constraints are in play. The weaker the
constraints, the broader the range of what is possible.

The sort of possibility we are interested in is very broad, and constraints are
correspondingly weak. We will allow that a story is possible or consistent so long as
it involves no internal contradiction. A story is impossible when it collapses from
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within. For this it may help to think about the way you respond to ordinary fiction.
Consider, say, J.K. Rowling’s Harry Potter and the Prisoner of Azkaban (much loved
by my youngest daughter). Harry and his friend Hermione are at wizarding school.
Hermione acquires a “time turner” which allows time travel, and uses it in order to
take classes that are offered at the same time. Such devices are no part of the actual
world, but they fit into the wizarding world of Harry Potter. So far, then, the story
does not contradict itself. So you go along.

At one stage, though, Harry is at a lakeshore under attack by a bunch of fearsome
“dementors.” His attempts to save himself appear to have failed when a figure across
the lake drives the dementors away. But the figure who saves Harry is Harry himself
who has come back from the future. Somehow, then, as often happens in these stories,
the past depends on the future, at the same time as the future depends on the past:
Harry is saved only insofar as he comes back from the future, but he comes back from
the future only insofar as he is saved. This, rather than the time travel itself, generates
an internal conflict. The story makes it the case that you cannot have Harry’s rescue
apart from his return, and cannot have Harry’s return apart from his rescue. This
might make sense if time were always repeating in an eternal loop. But, according to
the story, there were times before the rescue and after the return. So the story faces
internal collapse. Notice: the objection does not have anything to do with the way
things actually are — with existence of time turners or the like; it has rather to do with
the way the story hangs together internally.1 Similarly, we want to ask whether stories
hold together internally. If a story holds together internally, it counts for our purposes
as consistent and possible. If a story does not hold together, it is not consistent or
possible.

In some cases, stories may be consistent with things we know are true in the real
world. Thus Hannah could grow up to play in the WNBA. There is nothing about our
world that rules this out. But stories may remain consistent though they do not fit with
what we know to be true in the real world. Here are cases of time travel and the like.
Stories become inconsistent when they collapse internally — as when a story says
that some time both can and cannot happen apart from another.

As with a movie or novel, we can say that different things are true or false in our

1In more consistent cases of time travel (in fiction) time seems to move on different paths so that
after yesterday and today, there is another yesterday and another today. So time does not return to the
very point at which it first turns back. In the trouble cases, time seems to move in a sort of “loop” so that
a point on the path to today (this very day) goes through tomorrow. With this in mind, it is interesting
to think about say, the Terminator and Back to the Future movies along with, maybe more consistent,
Hermione’s “academic” travel or Groundhog Day. Even if I am wrong, and the Potter story is internally
consistent, the overall point should be clear. And it should be clear that I am not saying anything serious
about time travel.
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stories. In Harry Potter it is true that Harry and Hermione travel through time with a
timer turner, but false that they go through time in a DeLorean (as in the Back to the
Future films). In the real world, of course, it is false that there are time turners, and
false that DeLoreans go through time. Officially, a complete story is always maximal
in the sense that any sentence is either true or false in it. A story is inconsistent when
it makes some sentence both true and false. Since, ordinarily, we do not describe
every detail of what is true and what is false when we tell a story, what we tell is only
part of a maximal story. In practice, however, it will be sufficient for us merely to give
or fill in whatever details are relevant in a particular context.

But there are a couple of cases where we cannot say when sentences are true or
false in a story. The first is when stories we tell do not fill in relevant details. In The
Wizard of Oz, it is true that Dorothy wears red shoes. But neither the movie nor the
book have anything to say about whether she likes Twinkies. By themselves, then,
neither the book nor the movie give us enough information to tell whether “Dorothy
likes Twinkies” is true or false in the story. Similarly, there is a problem when stories
are inconsistent. Suppose according to some story,

(a) All dogs can fly

(b) Fido is a dog

(c) Fido cannot fly

Given (a), all dogs fly; but from (b) and (c), it seems that not all dogs fly. Given (b),
Fido is a dog; but from (a) and (c) it seems that Fido is not a dog. Given (c), Fido
cannot fly; but from (a) and (b) it seems that Fido can fly. The problem is not that
inconsistent stories say too little, but rather that they say too much. When a story is
inconsistent, we will refuse to say that it makes any sentence (simply) true or false.2

It will be be helpful to consider some examples of consistent and inconsistent
stories:

(a) The real story, “Everything is as it actually is.” Since no contradiction is
actually true, this story involves no contradiction; so it is internally consistent and
possible.

(b) “All dogs can fly: over the years, dogs have developed extraordinarily
large and muscular ears; with these ears, dogs can fly.” It is bizarre, but not obviously
inconsistent. If we allow the consistency of stories according to which monkeys fly,

2The intuitive picture developed above should be sufficient for our purposes. However, we are
on the verge of vexed issues. For further discussion, you may want to check out the vast literature
on “possible worlds.” Contributions of my own include the introductory article, “Modality,” in The
Continuum Companion to Metaphysics.
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as in The Wizard of Oz, or elephants fly, as in Dumbo, then we should allow that this
story is consistent as well.

(c) “All dogs can fly, but my dog Fido cannot; Fido’s ear was injured while he was
chasing a helicopter, and he cannot fly.” This is not internally consistent. If all dogs
can fly and Fido is a dog, then Fido can fly. You might think that Fido retains a sort of
flying nature — just because Fido remains a dog. In evaluating internal consistency,
however, we require that meanings remain the same.

(C) able to fly

Fido cannot fly

Fido is a dog

All dogs can fly

flying nature�
�
�
�

Q
Q
Q
Q

Q
Q

Q
Q

�
�

�
�

T

T F

F

If “can fly” means “is able to fly” then in the story it is true that Fido cannot fly, but
not true that all dogs can fly (since Fido cannot). If “can fly” means “has a flying
nature” then in the story it is true that all dogs can fly, but not true that Fido cannot
(because he remains a dog). The only way to keep both ‘all dogs fly’ and ‘Fido cannot
fly’ true is to switch the sense of “can fly” from one use to another. So long as “can
fly” means the same in each use, the story is sure to fall apart insofar as it says both
that Fido is and is not that sort of thing.

(d) “Germany won WWII; the United States never entered the war; after a long
and gallant struggle, England and the rest of Europe surrendered.” It did not happen;
but the story does not contradict itself. For our purposes, then it counts as possible.

(e) “1 1 D 3; the numerals ‘2’ and ‘3’ are switched (the numerals are ‘1’, ‘3’,
‘2’, ‘4’, ‘5’, ‘6’, ‘7’. . . ); so that one and one are three.” This story does not hang
together. Of course numerals can be switched — so that people would correctly say,
‘1 1 D 3’. But this does not make it the case that one and one are three! We tell
stories in our own language (imagine that you are describing a foreign-language film
in English). Take a language like English except that ‘fly’ means ‘bark’; and consider
a movie where dogs are ordinary, so that people in the movie correctly assert, in their
language, ‘dogs fly’. But changing the words people use to describe a situation does
not change the situation. It would be a mistake to tell a friend, in English, that you
saw a movie in which there were flying dogs. Similarly, according to our story, people
correctly assert, in their language, ‘1 1 D 3’. But it is a mistake to say in English
(as our story does), that this makes one and one equal to three.
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Some authors prefer talk of “possible worlds,” “possible situations” or the like to
that of consistent stories. It is conceptually simpler to stick with stories, as I have,
than to have situations and distinct descriptions of them. However, it is worth
recognizing that our consistent stories are or describe possible situations, so that
the one notion matches up directly with the others.

As you approach the following exercises, note that answers to problems indicated
by star are provided in the back of the book. It is essential to success that you work
a significant body of exercises successfully and independently. So do not neglect
exercises!

E1.1. Say whether each of the following stories is internally consistent or inconsis-
tent. In either case, explain why.

*a. Smoking cigarettes greatly increases the risk of lung cancer, although most
people who smoke cigarettes do not get lung cancer.

b. Joe is taller than Mary, but Mary is taller than Joe.

*c. Abortion is always morally wrong, though abortion is morally right in order
to save a woman’s life.

d. Mildred is Dr. Saunders’s daughter, although Dr. Saunders is not Mildred’s
father.

*e. No rabbits are nearsighted, though some rabbits wear glasses.

f. Ray got an ‘A’ on the final exam in both Phil 200 and Phil 192. But he got a
‘C’ on the final exam in Phil 192.

*g. Barack Obama was never president of the United States, although Michelle is
president right now.

h. Egypt, with about 100 million people is the most populous country in Africa,
and Africa contains the most populous country in the world. But the United
States has over 200 million people.

*i. The death star is a weapon more powerful than that in any galaxy, though there
is, in a galaxy far, far away, a weapon more powerful than it.

j. Luke and the Rebellion valiantly battled the evil Empire, only to be defeated.
The story ends there.
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E1.2. For each of the following sentences, (i) say whether it is true or false in the
real world and then (ii) say, if you can, whether it is true or false according to
the accompanying story. In each case, explain your answers. Do not forget
about contexts where we refuse to say whether sentences are true or false. The
first problem is worked as an example.

a. Sentence: Aaron Burr was never a president of the United States.

Story: Aaron Burr was the first president of the United States, however he
turned traitor and was impeached and then executed.

(i) It is true in the real world that Aaron Burr was never a president of the
United States. (ii) But the story makes the sentence false, since the story says
Burr was the first president.

b. Sentence: In 2006, there were still buffalo.

Story: A thundering herd of buffalo overran Phoenix, Arizona in early 2006.
The city no longer exists.

*c. Sentence: After overrunning Phoenix in early 2006, a herd of buffalo overran
Newark, New Jersey.

Story: A thundering herd of buffalo overran Phoenix, Arizona in early 2006.
The city no longer exists.

d. Sentence: There has been an all-out nuclear war.

Story: After the all-out nuclear war, John Connor organized the Resistance
against the machines — who had taken over the world for themselves.

*e. Sentence: Jack Nicholson has swum the Atlantic.

Story: No human being has swum the Atlantic. Jack Nicholson and Bill
Clinton and you are all human beings, and at least one of you swam all the
way across!

f. Sentence: Some people have died as a result of nuclear explosions.

Story: As a result of a nuclear blast that wiped out most of this continent, you
have been dead for over a year.

*g. Sentence: Your instructor is not a human being.

Story: No beings from other planets have ever made it to this country. However,
your instructor made it to this country from another planet.
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h. Sentence: Lassie is both a television and movie star.

Story: Dogs have super-big ears and have learned to fly. Indeed, all dogs can
fly. Among the many dogs are Lassie and Rin Tin Tin.

*i. Sentence: The Yugo is the most expensive car in the world.

Story: Jaguar and Rolls Royce are expensive cars. But the Yugo is more
expensive than either of them.

j. Sentence: Lassie is a bird who has learned to fly.

Story: Dogs have super-big ears and have learned to fly. Indeed, all dogs can
fly. Among the many dogs are Lassie and Rin Tin Tin.

1.2 The Definitions

The definition of logical validity depends on what is true and false in consistent stories.
The definition of soundness builds directly on the definition of validity. Note: in
offering these definitions, I stipulate the way the terms are to be used; there is no
attempt to say how they are used in ordinary conversation; rather, we say what they
will mean for us in this context.

LV An argument is logically valid if and only if (iff) there is no consistent story in
which all the premises are true and the conclusion is false.

LS An argument is logically sound iff it is logically valid and all of its premises are
true in the real world.

Observe that logical validity has entirely to do with what is true and false in consistent
stories. Only with logical soundness is validity combined with premises true in the
real world.

Logical (deductive) validity and soundness are to be distinguished from inductive
validity and soundness or success. For the inductive case, it is natural to focus on the
plausibility or the probability of stories — where an argument is relatively strong when
stories that make the premises true and conclusion false are relatively implausible.
Logical (deductive) validity and soundness are thus a sort of limiting case, where
stories that make premises true and conclusion false are not merely implausible, but
impossible. In a deductive argument, conclusions are supposed to be guaranteed;
in an inductive argument, conclusions are merely supposed to be made probable or
plausible. For mathematical logic, we set the inductive case to the side, and focus on
the deductive.
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Also, do not confuse truth with validity and soundness. A sentence is true in
the real world when it correctly represents how things are in the real world, and true
in a story when it correctly represents how things are in the story. An argument is
valid when there is no consistent story that makes the premises true and conclusion
false, and sound when it is valid and all its premises are true in the real world. The
definitions for validity and soundness depend on truth and falsity for the premises and
conclusion in stories and then in the real world. But, just as it would be a mistake to
say that the number three weighs eleven pounds, so truth and falsity do not even apply
to arguments themselves, which may be valid or sound.3

1.2.1 Invalidity

It will be easiest to begin thinking about invalidity. From the definition, if an argu-
ment is logically valid, there is no consistent story that makes the premises true and
conclusion false. So to show that an argument is invalid, it is enough to produce even
one consistent story that makes premises true and conclusion false. Perhaps there
are stories that result in other combinations of true and false for the premises and
conclusion; this does not matter for the definition. However, if there is even one story
that makes premises true and conclusion false then, by definition, the argument is not
logically valid — and if it is not valid, by definition, it is not logically sound. We can
work through this reasoning by means of a simple invalidity test. Given an argument,
this test has the following four stages.

IT a. List the premises and negation of the conclusion.

b. Produce a consistent story in which the statements from (a) are all true.

c. Apply the definition of validity.

d. Apply the definition of soundness.

We begin by considering what needs to be done to show invalidity. Then we do it.
Finally we apply the definitions to get the results. For a simple example, consider the
following argument,

(D)

Eating brussels sprouts results in good health
Ophelia has good health

Ophelia has been eating brussels sprouts
3From an introduction to philosophy of language, one might wonder (with good reason) whether the

proper bearers of truth are sentences rather than, say, propositions. This question is not relevant to the
simple point made above.
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The definition of validity has to do with whether there are consistent stories in which
the premises are true and the conclusion false. Thus, in the first stage, we simply write
down what would be the case in a story of this sort.

a. List premises and
negation of conclu-
sion.

In any story with the premises true and conclusion false,

1. Eating brussels sprouts results in good health
2. Ophelia has good health
3. Ophelia has not been eating brussels sprouts

Observe that the conclusion is reversed! At this stage we are not giving an argument.
Rather we merely list what is the case when the premises are true and conclusion false.
Thus there is no line between premises and the last sentence, insofar as there is no
suggestion of support. It is easy enough to repeat the premises for (1) and (2). Then
for (3) we say what is required for the conclusion to be false. Thus, “Ophelia has
been eating brussels sprouts” is false if Ophelia has not been eating brussels sprouts. I
return to this point below, but that is enough for now.

An argument is invalid if there is even one consistent story that makes the premises
true and the conclusion false. Thus, to show invalidity, it is enough to produce a
consistent story that makes the premises true and conclusion false.

b. Produce a consis-
tent story in which
the statements from
(a) are all true.

Story: Eating brussels sprouts results in good health, but
eating spinach does so as well; Ophelia is in good health
but has been eating spinach, not brussels sprouts.

For the statements listed in (a): the story satisfies (1) insofar as eating brussels sprouts
results in good health; (2) is satisfied since Ophelia is in good health; and (3) is
satisfied since Ophelia has not been eating brussels sprouts. The story explains
how she manages to maintain her health without eating brussels sprouts, and so the
consistency of (1) - (3) together. The story does not have to be true — and, of course,
many different stories will do. All that matters is that there is a consistent story in
which the premises of the original argument are true, and the conclusion is false.

Producing a story that makes the premises true and conclusion false is the creative
part. What remains is to apply the definitions of validity and soundness. By LV, an
argument is logically valid only if there is no consistent story in which the premises
are true and the conclusion is false. So if, as we have demonstrated, there is such a
story, the argument cannot be logically valid.
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c. Apply the definition
of validity.

This is a consistent story that makes the premises true and
the conclusion false; thus, by definition, the argument is
not logically valid.

By LS, for an argument to be sound, it must have its premises true in the real world
and be logically valid. Thus if an argument fails to be logically valid, it automatically
fails to be logically sound.

d. Apply the definition
of soundness.

Since the argument is not logically valid, by definition, it
is not logically sound.

Given an argument, the definition of validity depends on stories that make the
premises true and the conclusion false. Thus, in step (a) we simply list claims required
of any such story. To show invalidity, in step (b), we produce a consistent story that
satisfies each of those claims. Then in steps (c) and (d) we apply the definitions to get
the final results; for invalidity, these last steps are the same in every case.

It may be helpful to think of stories as a sort of “wedge” to pry the premises of
an argument off its conclusion. We pry the premises off the conclusion if there is a
consistent way to make the premises true and the conclusion not. If it is possible to
insert such a wedge between the premises and conclusion, then a defect is exposed in
the way premises are connected to the conclusion. Observe that the flexibility we allow
in consistent stories (with flying dogs and the like) corresponds directly to the strength
of the required connection between premises and conclusion. If the connection is
sufficient to resist all such attempts to wedge the premises off the conclusion, then it is
significant indeed. Observe also that our method reflects what we did with argument
(A) at the beginning of the chapter: Faced with the premises that only citizens can
vote and Hannah is a citizen, it was natural to worry that she might be under-age and
so cannot vote. But this is precisely to produce a story that makes the premises true
and conclusion false. Thus our method is not “strange” or “foreign”! Rather, it makes
rigorous what has seemed natural from the start.

Here is another example of our method. Though the argument may seem on its
face not to be a very good one, we can expose its failure by our methods — in fact,
again, our method may formalize or make rigorous a way you very naturally think
about cases of this sort. Here is the argument,

(E)
I shall run for president

I shall be one of the most powerful men on earth

To show that the argument is invalid, we turn to our standard procedure.



CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 16

a. In any story with the premise true and conclusion false,

1. I shall run for president
2. I shall not be one of the most powerful men on earth

b. Story: I do run for president, but get no financing and gain no votes; I lose the
election. In the process, I lose my job as a professor and end up begging for
scraps outside a Domino’s Pizza restaurant. I fail to become one of the most
powerful men on earth.

c. This is a consistent story that makes the premise true and the conclusion false;
thus, by definition, the argument is not logically valid.

d. Since the argument is not logically valid, by definition, it is not logically sound.

This story forces a wedge between the premise and the conclusion. Thus we use the
definition of validity to explain why the conclusion does not properly follow from
the premises. It is, perhaps, obvious that running for president is not enough to make
me one of the most powerful men on earth. Our method forces us to be very explicit
about why: running for president leaves open the option of losing, so that the premise
does not force the conclusion. Once you get used to it, then, our method may appear
as a natural approach to arguments.

If you follow this method for showing invalidity, the place where you are most
likely to go wrong is stage (b), telling stories where the premises are true and the
conclusion false. Be sure that your story is consistent, and that it verifies each of the
claims from stage (a). If you do this, you will be fine.

E1.3. Use our invalidity test to show that each of the following arguments is not
logically valid, and so not logically sound. Understand terms in their most
natural sense.

*a. If Joe works hard, then he will get an ‘A’
Joe will get an ‘A’

Joe works hard

b. Harry had his heart ripped out by a government agent

Harry is dead

c. Everyone who loves logic is happy
Jane does not love logic

Jane is not happy
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d. Our car will not run unless it has gasoline
Our car has gasoline

Our car will run

e. Only citizens can vote
Hannah is a citizen

Hannah can vote

1.2.2 Validity

Suppose I assert that no student at California State University San Bernardino is
from Beverly Hills, and attempt to prove it by standing in front of the library and
buttonholing students to ask if they are from Beverly Hills — I do this for a week and
never find anyone from Beverly Hills. Is the claim that no CSUSB student is from
Beverly Hills thereby proved? Of course not – for there may be students I never met.
Similarly, failure to find a story to make the premises true and conclusion false does
not show that there is not one — for all we know, there might be some story we have
not thought of yet. So, to show validity, we need another approach. If we could show
that every story which makes the premises true and conclusion false is inconsistent,
then we could be sure that no consistent story makes the premises true and conclusion
false — and so, from the definition of validity, we could conclude that the argument is
valid. Again, we can work through this by means of a procedure, this time a validity
test.

VT a. List the premises and negation of the conclusion.

b. Expose the inconsistency of such a story.

c. Apply the definition of validity.

d. Apply the definition of soundness.

In this case, we begin in just the same way. The key difference arises at stage (b). For
an example, consider this argument.

(F)

No car is a person
My mother is a person

My mother is not a car

Since LV has to do with stories where the premises are true and the conclusion false, as
before, we begin by listing the premises together with the negation of the conclusion.
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a. List premises and
negation of conclu-
sion.

In any story with the premises true and conclusion false,

1. No car is a person
2. My mother is a person
3. My mother is a car

Any story where “My mother is not a car” is false, is one where my mother is a car
(perhaps along the lines of the 1965 TV series, My Mother the Car).

For invalidity, we would produce a consistent story in which (1) - (3) are all true.
In this case, to show that the argument is valid, we show that this cannot be done.
That is, we show that no story that makes each of (1) - (3) true is a consistent story.

b. Expose the incon-
sistency of such a
story.

In any such story,

Given (1) and (3),
4. My mother is not a person
Given (2) and (4),
5. My mother is and is not a person

The reasoning should be clear if you focus just on the specified lines. Given (1) and
(3), if no car is a person and my mother is a car, then my mother is not a person. But
then my mother is a person from (2) and not a person from (4). So we have our goal:
any story with (1) - (3) as members contradicts itself and therefore is not consistent.
Observe that we could have reached this result in other ways. For example, we might
have reasoned from (1) and (2) that (40), my mother is not a car; and then from (3) and
(40) to the result that (50) my mother is and is not a car. Either way, an inconsistency is
exposed. Thus, as before, there are different options for this creative part.

Now we are ready to apply the definitions of logical validity and soundness. First,

c. Apply the definition
of validity.

So no consistent story makes the premises true and con-
clusion false; so by definition, the argument is logically
valid.

For the invalidity test, we produce a consistent story that “hits the target” from stage
(a), to show that the argument is invalid. For the validity test, we show that any attempt
to hit the target from stage (a) must collapse into inconsistency: no consistent story
includes each of the elements from stage (a) so that there is no consistent story in
which the premises are true and the conclusion false. So by application of LV the
argument is logically valid.

Given that the argument is logically valid, LS makes logical soundness depend on
whether the premises are true in the real world. Suppose we think the premises of our
argument are in fact true. Then,



CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 19

d. Apply the definition
of soundness.

In the real world no car is a person and my mother is a
person, so all the premises are true; so since the argument
is also logically valid, by definition, it is logically sound.

Observe that LS requires for logical soundness that an argument is logically valid
and that its premises are true in the real world. Thus we are no longer thinking about
merely possible stories! Soundness depends on the way things are in the real world.
And we do not say anything at this stage about claims other than the premises of the
original argument! Thus we do not make any claim about the truth or falsity of the
conclusion, “my mother is not a car.” Rather, the observations have entirely to do
with the two premises, “no car is a person” and “my mother is a person.” When an
argument is valid and the premises are true in the real world, by LS, it is logically
sound.

But it will not always be the case that a valid argument has true premises. Say
My Mother the Car is (surprisingly) a documentary about a person reincarnated as
a car (the premise of the show) and therefore a true account of some car that is a
person. Then some cars are persons and the first premise is false; so you would have
to respond as follows,

d0. Since in the real world some cars are persons, the first premise is not true. So,
though the argument is logically valid, by definition it is not logically sound.

Another option is that you are in doubt about reincarnation into cars, and in particular
about whether some cars are persons. In this case you might respond as follows,

d00. Although in the real world my mother is a person, I cannot say whether no car
is a person; so I cannot say whether the first premise is true. So though the
argument is logically valid, I cannot say whether it is logically sound.

So once we decide that an argument is valid, for soundness there are three options:

(i) You are in a position to identify all of the premises as true in the real world.
In this case, you should do so, and apply the definition for the result that the
argument is logically sound.

(ii) You are in a position to say that at least one of the premises is false in the real
world. In this case, you should do so, and apply the definition for the result that
the argument is not logically sound.
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(iii) You cannot identify any premise as false, but neither can you identify them all
as true. In this case, you should explain the situation and apply the definition for
the result that you are not in a position to say whether the argument is logically
sound.

So given a valid argument, there remains a substantive questions about soundness. In
some cases, as for example (C) on p. 3, this can be the most controversial part.

Again, given an argument, we say in step (a) what would be the case in any story
that makes the premises true and the conclusion false. Then, at step (b), instead of
finding a consistent story in which the premises are true and conclusion false, we
show that there is no such thing. Steps (c) and (d) apply the definitions for the final
results. Observe that only one method can be correctly applied in a given case! If
we can produce a consistent story according to which the premises are true and the
conclusion is false, then it is not the case that no consistent story makes the premises
true and the conclusion false. Similarly, if no consistent story makes the premises true
and the conclusion false, then we will not be able to produce a consistent story that
makes the premises true and the conclusion false.

For showing validity, the most difficult steps are (a) and (b), where we say what
happens in every story where the premises true and the conclusion false. For an
example, consider the following argument.

(G)

All collies can fly
All collies are dogs

All dogs can fly

It is invalid. We can easily tell a story that makes the premises true and the conclusion
false — say one where collies fly but dachshunds do not. Suppose, however, that we
proceed with the validity test as follows,

a. In any story with the premises true and conclusion false,

1. All collies can fly
2. All collies are dogs
3. No dogs can fly

b. In any such story,

Given (1) and (2),
4. Some dogs can fly
Given (3) and (4),
5. Some dogs can and cannot fly



CHAPTER 1. LOGICAL VALIDITY AND SOUNDNESS 21

c. So no consistent story makes the premises true and conclusion false; so by
definition, the argument is logically valid.

d. Since in the real world collies cannot fly, the first premise is not true. So, though
the argument is logically valid, by definition it is not logically sound.

The reasoning at (b), (c) and (d) is correct. Any story with (1) - (3) is inconsistent.
But something is wrong. (Can you see what?) There is a mistake at (a): It is not
the case that every story that makes the premises true and conclusion false includes
(3). The negation of “All dogs can fly” is not “No dogs can fly,” but rather, “Not all
dogs can fly” (or “Some dogs cannot fly”). All it takes to falsify the claim that all
dogs fly is some dog that does not. Thus, for example, all it takes to falsify the claim
that everyone will get an ‘A’ is one person who does not (on this, see the extended
discussion on p. 22). So for argument (G) we have indeed shown that every story
of a certain sort is inconsistent, but have not shown that every story which makes the
premises true and conclusion false is inconsistent. In fact, as we have seen, there are
consistent stories that make the premises true and conclusion false.

Similarly, in step (b) it is easy to get confused if you consider too much information
at once. Ordinarily, if you focus on sentences singly or in pairs, it will be clear what
must be the case in every story including those sentences. It does not matter which
sentences you consider in what order, so long as in the end, you reach a contradiction
according to which something is and is not so.

So far, we have seen our procedures applied in contexts where it is given ahead
of time whether an argument is valid or invalid. But not all situations are so simple.
In the ordinary case, it is not given whether an argument is valid or invalid. In this
case, there is no magic way to say ahead of time which of our two tests, IT or VT
applies. The only thing to do is to try one way — if it works, fine. If it does not, try
the other. It is perhaps most natural to begin by looking for stories to pry the premises
off the conclusion. If you can find a consistent story to make the premises true and
conclusion false, the argument is invalid. If you cannot find any such story, you may
begin to suspect that the argument is valid. This suspicion does not itself amount
to a demonstration of validity! But you might try to turn your suspicion into such a
demonstration by attempting the validity method. Again, if one procedure works, the
other better not!

E1.4. Use our validity procedure to show that each of the following is logically valid,
and decide (if you can) whether it is logically sound.
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Negation and Quantity
In general you want to be careful about negations. To negate any claim P it is
always correct to write simply, it is not the case that P . You may choose to do this
for conclusions in the first step of our procedures. At some stage, however, you will
need to understand what the negation comes to. We have chosen to offer interpreted
versions in the text. It is easy enough to see that,

My mother is a car and My mother is not a car

negate one another. However, there are cases where caution is required. This is
particularly the case with terms involving quantities.

Say the conclusion of your argument is, ‘there are at least ten apples in the basket’.
Clearly a story according to which there are, say, three apples in the basket makes
this conclusion false. However, there are other ways to make the conclusion false —
as if there are two apples or seven. Any of these are fine for showing invalidity.

But when you show that an argument is valid, you must show that any story that
makes the premises true and conclusion false is inconsistent. So it is not sufficient to
show that stories with (the premises true and) three apples in the basket contradict.
Rather, you need to show that any story that includes the premises and less than ten
apples fails. Thus in step (a) of our procedure we always say what is so in every
story that makes the premises true and conclusion false. So, in (a) you would have
the premises and, ‘there are less than ten apples in the basket’.

If a statement is included in some range of consistent stories, then its negation says
what is so in all the others — all the ones where it is not so.

P

not-P

all consistent stories

That is why the negation of ‘there are at least ten’ is ‘there are less than ten’.

The same point applies with other quantities. Consider some grade examples: First,
if a professor says, “everyone will not get an ‘A’,” she says something disastrous
— nobody in your class will get an ‘A’. In order too deny it, to show that she is
wrong, all you need is at least one person that gets an ‘A’. In contrast, if she says,
“someone will not get an ‘A’,” she says only what you expect from the start — that
not everyone will get an ‘A’. To deny this, you would need that everyone gets an
‘A’. Thus the following pairs negate one another.

Everyone will not get an ‘A’ and Someone will get an ‘A’

Someone will not get an ‘A’ and Everyone will get an ‘A’

It is difficult to give rules to cover all the cases. The best is just to think about what
you are saying, perhaps with reference to examples like these.
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*a. If Bill is president, then Hillary is first lady
Hillary is not first lady

Bill is not president

b. Only fools find love
Elvis was no fool

Elvis did not find love

c. If there is a good and omnipotent god, then there is no evil
There is evil

There is no good and omnipotent god

d. All sparrows are birds
All birds fly

All sparrows fly

e. All citizens can vote
Hannah is a citizen

Hannah can vote

E1.5. Use our procedures to say whether the following are logically valid or invalid,
and sound or unsound. Hint: You may have to do some experimenting to
decide whether the arguments are logically valid or invalid — and so decide
which procedure applies.

a. If Bill is president, then Hillary is first lady
Bill is president

Hillary is first lady

b. Most professors are insane
TR is a professor

TR is insane

*c. Some dogs have red hair
Some dogs have long hair

Some dogs have long, red hair
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d. If you do not strike the match, then it does not light
The match lights

You strike the match

e. Shaq is taller than Kobe
Kobe is at least as tall as TR

Kobe is taller than TR

1.3 Some Consequences

We now know what logical validity and soundness are, and should be able to identify
them in simple cases. Still, it is one thing to know what validity and soundness are,
and another to know why they matter. So in this section I turn to some consequences
of the definitions.

1.3.1 Soundness and Truth

First, a consequence we want: The conclusion of every sound argument is true in the
real world. Observe that this is not part of what we require to show that an argument
is sound. LS requires just that an argument is valid and that its premises are true.
However it is a consequence of validity plus true premises that the conclusion is true
as well.

sound � valid true premises
true conclusion

To see this, consider a two-premise argument. Say the real story describes the real
world; so the sentences of the real story are all true in the real world. Then in the real
story, the premises and conclusion of our argument must fall into one of the following
combinations of true and false:

1 2 3 4 5 6 7 8
T T T F T F F F
T T F T F T F F
T F T T F F T F

combinations for

the real story

These are all the combinations of T and F. Say the argument is logically valid; then no
consistent story makes the premises true and the conclusion false. But the real story is
a consistent story. So we can be sure that the real story does not result in combination
(2). So far, the real story might result in any of the other combinations. Thus the
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conclusion of a valid argument may or may not be true in the real world. Now say
the argument is sound; then it is valid and all its premises are true in the real world.
Again, since it is valid, the real story does not result in combination (2). And since
the premises of a sound argument are true in the real world, we can be sure that the
premises do not fall into any of the combinations (3) - (8). (1) is the only combination
left: in the real story, and so in the real world, the conclusion of a sound argument is
true. And not only in this case but in general, if an argument is sound its conclusion is
true in the real world: Since a sound argument is valid, there is no consistent story
where its premises are true and the conclusion is false, and since the premises really
are true, the conclusion has to be true as well. Put another way, if an argument is
sound, its premises are true in the real story; but then if the conclusion is false, the
real story has the premises true and conclusion false — and the argument is not valid.
So if an argument is sound, if it is valid and its premises are true, its conclusion must
be true.

Note again: we do not need that the conclusion is true in the real world in order
to decide that an argument is sound; saying that the conclusion is true is no part of
our procedure for validity or soundness! Rather, by discovering that an argument is
logically valid and that its premises are true, we establish that it is sound; this gives us
the result that its conclusion therefore is true. And that is just what we want.

1.3.2 Validity and Form

It is worth observing a connection between what we have done and argument form.
Some of the arguments we have seen so far are of the same general form. Thus both
of the arguments on the left have the form on the right.

(H)

If Joe works hard, then
he will get an ‘A’
Joe works hard

Joe will get an ‘A’

If Hannah is a citizen
then she can vote
Hannah is a citizen

Hannah can vote

If P then Q

P

Q

As it turns out, all arguments of this form are valid. In contrast, the following
arguments with the indicated form are not.

(I)

If Joe works hard then
he will get an ‘A’
Joe will get an ‘A’

Joe works hard

If Hannah can vote,
then she is a citizen
Hannah is a citizen

Hannah can vote

If P then Q

Q

P
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There are stories where, say, Joe cheats for the ‘A’, or Hannah is a citizen but not old
enough to vote. In these cases, there is some way to obtain condition Q other than by
having P — this is what the stories bring out. And, generally, it is often possible to
characterize arguments by their forms, where a form is valid iff every instance of it is
logically valid. Thus the first form listed above is valid, and the second not.

In chapters to come, we take advantage of certain very general formal or structural
features of arguments to identify ones that are valid and ones that are invalid. For now,
though, it is worth noting that some presentations of critical reasoning (which you
may or may not have encountered), take advantage of patterns like those above, listing
typical ones that are valid, and typical ones that are not (for example, Cederblom and
Paulsen, Critical Reasoning). A student may then identify valid and invalid arguments
insofar as they match the listed forms. This approach has the advantage of simplicity
— and one may go quickly to applications of the logical notions for concrete cases.
But the approach is limited to application of listed forms, and so to a very narrow
range of arguments. In contrast, our approach based on definition LV has application
to arbitrary arguments. Further, a mere listing of valid forms does not explain their
relation to truth, where the definition is directly connected. Finally, for our logical
machine, within a certain range we shall develop develop an account of validity for
quite arbitrary forms. So we are pursuing a general account or theory of validity that
goes well beyond the mere lists of these other more traditional approaches.4

1.3.3 Relevance

Another consequence seems less welcome. Consider the following argument.

(J)

Snow is white
Snow is not white

All dogs can fly

It is natural to think that the premises are not connected to the conclusion in the
right way — for the premises have nothing to do with the conclusion — and that this
argument therefore should not be logically valid. But if it is not valid, by definition,
there is a consistent story that makes the premises true and the conclusion false. And,
in this case, there is no such story, for no consistent story makes the premises true.

4Some authors introduce a notion of formal validity (maybe in the place of logical validity as above)
such that an argument is formally valid iff it has some valid form. As above, formal validity is parasitic
on logical validity, together with a to-be-specified notion of form. But if an argument is formally valid,
it is logically valid. So if our logical machine is adequate to identify formal validity, it identifies logical
validity as well.
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Thus, by definition, this argument is logically valid. The procedure applies in a
straightforward way. Thus,

a. In any story that makes the premises true and conclusion false,

1. Snow is white
2. Snow is not white
3. Some dogs cannot fly

b. In any such story,

Given (1) and (2),
4. Snow is and is not white

c. So no consistent story makes the premises true and conclusion false; so by
definition, the argument is logically valid.

d. Since in the real world snow is white, the second premise is not true. So, though
the argument is logically valid, by definition it is not logically sound.

This seems bad! Intuitively, there is something wrong with the argument. But, on
our official definition, it is logically valid. One might rest content with the observation
that, even though the argument is logically valid, it is not logically sound. But this
does not remove the general worry. For this argument,

(K)
There are fish in the sea

Nothing is round and not round

has all the problems of the other and is logically sound as well. (Why?) One might,
on the basis of examples of this sort, decide to reject the (classical) account of validity
with which we have been working. Some do just this.5 But, for now, let us see
what can be said in defense of the classical approach. (And the classical approach is,
no doubt, the approach you have seen or will see in any standard course on critical
thinking or logic.)

As a first line of defense, one might observe that the conclusion of every sound
argument is true and ask, “What more do you want?” We use arguments to demonstrate
the truth of conclusions. And nothing we have said suggests that sound arguments

5Especially the so-called “relevance” logicians. For an introduction, see Graham Priest, Non-
Classical Logics. But his text presumes mastery of material corresponding to Part I and Part II (or at
least Part I with chapter 7) of this one. So the non-classical approaches develop or build on the classical
one developed here.
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do not have true conclusions: An argument whose premises are inconsistent is sure
to be unsound. And an argument whose conclusion cannot be false is sure to have a
true conclusion. So soundness may seem sufficient for our purposes. Even though we
accept that there remains something about argument goodness that soundness leaves
behind, we can insist that soundness is useful as an intellectual tool. Whenever it is
the truth or falsity of a conclusion that matters, we can profitably employ the classical
notions.

But one might go further, and dispute even the suggestion that there is something
about argument goodness that soundness leaves behind. Consider the following two
argument forms.

(ds) P or Q, not-P

Q

(add) P

P or Q

According to ds (disjunctive syllogism), if you are given that P or Q and that not-P ,
you can conclude that Q. If you have cake or ice cream, and you do not have cake, you
have ice cream; if you are in California or New York, and you are not in California,
you are in New York; and so forth. Thus ds seems hard to deny. And similarly for
add (addition). Where ‘or’ means ‘one or the other or both’, when you are given that
P , you can be sure that P or anything. Say you have cake, then you have cake or ice
cream, cake or brussels sprouts, and so forth; if grass is green, then grass is green or
pigs have wings, grass is green or dogs fly, and so forth.

Return now to our problematic argument. As we have seen, it is valid according
to the classical definition LV. We get a similar result when we apply the ds and add
principles.

1. Snow is white premise
2. Snow is not white premise
3. Snow is white or all dogs can fly from 1 and add
4. All dogs can fly from 2 and 3 and ds

If snow is white, then snow is white or anything. So snow is white or dogs fly. So we
use line 1 with add to get line 3. But if snow is white or dogs fly, and snow is not
white, then dogs fly. So we use lines 2 and 3 with ds to reach the final result. So our
principles ds and add go hand-in-hand with the classical definition of validity. The
argument is valid on the classical account; and with these principles, we can move
from the premises to the conclusion. If we want to reject the validity of this argument,
we will have to reject not only the classical notion of validity, but also one of our
principles ds or add. And it is not obvious that one of the principles should go. If we
decide to retain both ds and add then, seemingly, the classical definition of validity
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should stay as well. If we have intuitions according to which ds and add should stay,
and also that the definition of validity should go, we have conflicting intuitions. Thus
our intuitions might, at least, be sensibly resolved in the classical direction.

These issues are complex, and a subject for further discussion. For now, it is
enough for us to treat the classical approach as a useful tool: It is useful in contexts
where what we care about is whether conclusions are true. And alternate approaches
to validity typically develop or modify the classical approach. So it is natural to begin
where we are, with the classical account. At any rate, this discussion constitutes a sort
of acid test: If you understand the validity of the “snow is white” and “fish in the sea”
arguments (J) and (K), you are doing well — you understand how the definition of
validity works, with its results that may or may not now seem controversial. If you
do not see what is going on in those cases, then you have not yet understood how the
definitions work and should return to section 1.2 with these cases in mind.

E1.6. Use our procedures to say whether the following are logically valid or invalid,
and sound or unsound. Hint: You may have to do some experimenting to
decide whether the arguments are logically valid or invalid — and so decide
which procedure applies.

a. Bob is over six feet tall
Bob is under six feet tall

Bob is disfigured

b. Marilyn is not over six feet tall
Marilyn is not under six feet tall

Marilyn is not in the WNBA

c. There are fish in the sea

Nothing is round and not round

*d. Cheerios are square
Chex are round

There is no round square

e. All dogs can fly
Fido is a dog
Fido cannot fly

I am blessed
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E1.7. Respond to each of the following.

a. Create another argument of the same form as the first set of examples (H)
from section 1.3.2, and then use our regular procedures to decide whether it is
logically valid and sound. Is the result what you expect? Explain.

b. Create another argument of the same form as the second set of examples (I)
from section 1.3.2, and then use our regular procedures to decide whether it is
logically valid and sound. Is the result what you expect? Explain.

E1.8. Which of the following are true, and which are false? In each case, explain
your answers, with reference to the relevant definitions. The first is worked as
an example.

a. A logically valid argument is always logically sound.

False. An argument is sound iff it is logically valid and all of its premises are
true in the real world. Thus an argument might be valid but fail to be sound if
one or more of its premises is false in the real world.

b. A logically sound argument is always logically valid.

*c. If the conclusion of an argument is true in the real world, then the argument
must be logically valid.

d. If the premises and conclusion of an argument are true in the real world, then
the argument must be logically sound.

*e. If a premise of an argument is false in the real world, then the argument cannot
be logically valid.

f. If an argument is logically valid, then its conclusion is true in the real world.

*g. If an argument is logically sound, then its conclusion is true in the real world.

h. If an argument has contradictory premises (its premises are true in no consistent
story), then it cannot be logically valid.

*i. If the conclusion of an argument cannot be false (is false in no consistent
story), then the argument is logically valid.

j. The premises of every logically valid argument are relevant to its conclusion.
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E1.9. For each of the following concepts, explain in an essay of about two pages, so
that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii)
where the concept applies, and (iv) where it does not. Your essay should
exhibit an understanding of methods from the text.

a. Logical validity

b. Logical soundness

E1.10. Do you think we should accept the classical account of validity? In an essay
of about two pages, explain your position, with special reference to difficulties
raised in section 1.3.3.



Chapter 2

Formal Languages

Having said in chapter 1 what validity and soundness are, we now turn to our logical
machine. As depicted in the picture of elements for symbolic logic on p. 2, this
machine begins with symbolic representations of ordinary reasoning. In this chap-
ter we introduce the formal languages by introducing their grammar. After some
brief introductory remarks, the chapter divides into sections that introduce grammar
for a sentential language Ls (section 2.2), and then the grammar for an extended
quantificational language Lq (section 2.3).

2.1 Introductory

There are different ways to introduce a formal language. It is natural to introduce
expressions of a new language in relation to expressions of one that is already familiar.
Thus, a standard course in a foreign language is likely to present vocabulary lists of
the sort,

chou: cabbage
petit: small

:::

But the terms of a foreign language are not originally defined by such lists. Rather
French, in this case, has conventions of its own such that sometimes ‘chou’ corre-
sponds to ‘cabbage’ and sometimes it does not. It is not a legitimate criticism of a
Frenchman who refers to his sweetheart as mon petit chou to observe that she is no
cabbage! Though it is possible to use such correlations to introduce the conventions
of a new language, it is also possible to introduce a language “as itself” — the way a
native speaker learns it. In this case, one avoids the danger of importing conventions

32
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and patterns from one language onto the other. Similarly, the expressions of a formal
language might be introduced in correlation with expressions of, say, English. But
this runs the risk of obscuring just what the official definitions accomplish. Since
we will be concerned extensively with what follows from the definitions, it is best to
introduce our languages in their “pure” forms.

In this chapter, we develop the grammar of our formal languages. Consider the
following algebraic expressions,

a b = c a = c

Until we know what numbers are assigned to the terms (as a = 1; b = 2; c = 3/, we
cannot evaluate the first for truth or falsity. Still, we can confidently say that it is
grammatical where the other is not. We shall be able to evaluate the grammar of formal
languages in a similar way. Though, eventually, our goal is to represent ordinary
reasonings in a formal language, we do not have to know what the language represents
in order to decide if a sentence is grammatically correct. Again, just as a computer
can check the spelling and grammar of English without reference to meaning, so we
can introduce the vocabulary and grammar of our formal languages without reference
to what their expressions mean or what makes them true. The grammar, taken alone,
is completely straightforward. Taken this way, we work directly from the definitions,
without “pollution” from associations with English or whatever.

So we want the definitions. Even so, it may be helpful to offer some hints that
foreshadow how things will go. Do not take these as defining anything! Still, it is nice
to have a sense of how it fits together. Consider some simple sentences of an ordinary
language, say, ‘The butler is guilty’ and ‘The maid is guilty’. It will be convenient to
introduce capital letters corresponding to these, say, B and M . Such sentences may
combine to form ones that are more complex as, ‘It is not the case that the butler is
guilty’ or ‘If the butler is guilty, then the maid is guilty’. We shall find it convenient
to express these, ‘�the butler is guilty’ and ‘The butler is guilty! the maid is guilty’,
with operators � and!. Putting these together we get, �B and B !M . Operators
may be combined in obvious ways so that B ! �M says that if the butler is guilty
then the maid is not. And so forth. We shall see that incredibly complex expressions
of this sort are possible!

In this case, simple sentences, ‘The butler is guilty’ and ‘The maid is guilty’
are “atoms” and complex sentences are built out of them. This is characteristic of
the sentential languages to be considered in section 2.2. For the quantificational
languages of section 2.3, certain sentence parts are taken as atoms. So quantificational
languages expose structure beyond that for the sentential case. Perhaps, though, this
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will be enough to give you a glimpse of the overall strategy and aims for the formal
languages of which we are about to introduce the grammar.

2.2 Sentential Languages

Just as algebra or English have their own vocabulary or symbols, and then grammatical
rules for the way the vocabulary is combined, so our formal language has its own
vocabulary, and then grammatical rules for the way the vocabulary is combined. In
this section, we introduce the vocabulary for a sentential language, introduce the
grammatical rules, and conclude with some discussion of abbreviations for official
expressions.

2.2.1 Vocabulary

We begin, then, with the vocabulary. In this section, we say which symbols are
included in the language, and introduce some conventions for talking about the
symbols.

In the sentential case, vocabulary includes,

VC (p) Punctuation symbols: . /

(o) Operator symbols: � !

(s) A non-empty countable collection of sentence letters

And that is all. � is tilde and! is arrow.1 In order to fully specify the vocabulary of
any particular sentential language, we need to identify its sentence letters — so far
as definition VC goes, different languages may differ in their collections of sentence
letters. The only constraint on such specifications is that the collections of sentence
letters be non-empty and countable. A collection is non-empty iff it has at least one
member. So any sentential language has at least one sentence letter. A collection
is countable iff its members can be matched one-to-one with all (or some) of the
integers. Thus we might let the sentence letters be A; B : : : Z, where these correlate
with the integers 1 : : : 26. Or we might let there be infinitely many sentence letters,
S0; S1; S2 : : : where the letters are correlated with the integers by their subscripts.

1Sometimes sentential languages are introduced with different symbols, for example, : for �, or
� for!. It should be easy to convert between presentations of the different sorts. And sometimes
sentential languages include operators in addition to � and! (for example, _, ^,$). Such symbols
will be introduced in due time — but as abbreviations for complex official expressions.
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So there is room for different sentential languages. Having made this point,
though, we immediately focus on a standard sentential language Ls whose sentence
letters are Roman italics A : : : Z with or without integer subscripts. Thus,

A B K Z

are sentence letters of Ls. Similarly,

A1 B3 K7 Z23

are sentence letters of Ls. We will not use the subscripts very often, but they guarantee
that we never run out of sentence letters! Perhaps surprisingly, as described in the
box on p. 36 (and E2.2), these letters too can be correlated with the integers. Official
sentences of Ls are built out of this vocabulary.

To proceed, we need some conventions for talking about expressions of a language
like Ls. Here, Ls is an object language — the thing we want to talk about, and we
require conventions for the metalanguage — for talking about the object language. In
general, for any formal object language L, an expression is a sequence of one or more
elements of its vocabulary. Thus .A ! B/ is an expression of Ls, but .A ? B/ is
not. (What is the difference?) We shall use script characters A : : : Z as variables that
range over expressions. ‘�’, ‘!’, ‘.’, and ‘/’ represent themselves. Concatenated or
joined symbols in the metalanguage represent the concatenation of the symbols they
represent.

To see how this works, think of metalinguistic expressions as “mapping” to object-
language ones. Thus, for example, where S represents an arbitrary sentence letter,
�S may represent any of, �A, �B , or �Z. But �.A! B/ is not of that form, for it
does not consist of a tilde followed by a sentence letter. With S restricted to sentence
letters, there is a straightforward map from �S onto �A, �B , or �Z, but not from
�S onto �.A! B/.

(A)

�A �B �Z �

‹‚ …„ ƒ
.A! B/

�S �S �S �S

?? ?? ?? ?

In the first three cases, � maps to itself, and S to a sentence letter. In the last case
there is no map. We might try mapping S to A or B; but this would leave the rest
of the expression unmatched. While �.A! B/ is not of the form �S , if we let P

represent any arbitrary expression, then �.A! B/ is of the form �P , for it consists
of a tilde followed by an expression of some sort. An object-language expression has
some metalinguistic form just when there is a complete map from the metalinguistic
form to it.
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Countability
To see the full range of languages which are allowed under VC, observe how
multiple infinite series of sentence letters may satisfy the countability constraint.
Thus, for example, suppose we have two series of sentence letters, A0; A1 : : : and
B0; B1 : : : These can be correlated with the integers as follows,

A0 B0 A1 B1 A2 B2

j j j j j j : : :

0 1 2 3 4 5

For any integer n, An is matched with 2n, and Bn with 2n 1. So each sentence
letter is matched with some integer; so the sentence letters are countable. If there
are three series, they may be correlated,

A0 B0 C0 A1 B1 C1

j j j j j j : : :

0 1 2 3 4 5

so that every sentence letter is matched to some integer. And similarly for any finite
number of series. And there might be 26 such series, as for our language Ls.

In fact even this is not the most general case. If there are infinitely many series of
sentence letters, we can still line them up and correlate them with the integers. Here
is one way to proceed. Order the letters as follows,

A0 ! A1 A2 ! A3 : : :
. % .

B0 B1 B2 B3 : : :
# % .

C0 C1 C2 C3 : : :
.

D0 D1 D2 D3 : : :

:
:
:

And following the arrows, match them accordingly with the integers,

A0 A1 B0 C0 B1 A2

j j j j j j : : :

0 1 2 3 4 5

so that, again, any sentence letter is matched with some integer. It may seem odd
that we can line symbols up like this, but it is hard to dispute that we have done so.
Thus we may say that VC is compatible with a wide variety of specifications, but
also that all legitimate specifications have something in common: If a collection
is countable, it is possible to sort its members into a series with a first member, a
second member, and so forth.
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Say P represents any arbitrary expression. Then by similar reasoning, .A !

B/! .A! B/ is of the form P ! P .

(B) ‚ …„ ƒ
.A! B/!

‚ …„ ƒ
.A! B/

P ! P

?��	 @@R

In this case, P maps to all of .A! B/ and! to itself. A constraint on our maps is
that the use of the metavariables A : : : Z must be consistent within a given map. Thus
.A! B/! .B ! B/ is not of the form P ! P .

(C) ‚ …„ ƒ
.A! B/!

‹‚ …„ ƒ
.B ! B/

P ! P

?��	 or ‹‚ …„ ƒ
.A! B/!

‚ …„ ƒ
.B ! B/

P ! P

? @@R

We are free to associate P with whatever we want. However, within a given map,
once P is associated with some expression, we have to use it consistently within that
map.

Observe again that �S and P ! P are not expressions of Ls. Rather, we use
them to talk about expressions of Ls. And it is important to see how we can use the
metalanguage to make claims about a range of expressions all at once. Given that �A,
�B and �Z are all of the form �S , when we make some claim about expressions
of the form �S , we say something about each of them — but not about �.A! B/.
Similarly, if we make some claim about expressions of the form P ! P , we say
something with application to a range of expressions. In the next section, for the
specification of formulas, we use the metalanguage in just this way.

E2.1. Assuming that S may represent any sentence letter, and P any arbitrary expres-
sion of Ls, use maps to determine whether each of the following expressions is
(i) of the form .S ! �P / and then (ii) whether it is of the form .P ! �P /.
In each case, explain your answers.

a. .A! �A/

b. .A! �.R! �Z//

c. .�A! �.R! �Z//

d. ..R! �Z/! �.R! �Z//

*e. ..! �/! �.! �//
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E2.2. On the pattern of examples from the countability guide on p. 36, show that
the sentence letters of Ls are countable — that is, that they can be correlated
with the integers. On the scheme you produce, what integers correlate with
A, B1 and C10? Hint: Supposing that A without subscript is like A0, for any
integer n, you should be able to produce a formula for the position of any An,
and similarly for Bn, Cn and the like. Then it will be easy to find the position
of any letter, even if the question is about, say, L125.

2.2.2 Formulas

We are now in a position to say which expressions of a sentential language are its
grammatical formulas and sentences. The specification itself is easy. We will spend a
bit more time explaining how it works. For a given sentential language L,

FR (s) If S is a sentence letter, then S is a formula.

(�) If P is a formula, then �P is a formula.

(!) If P and Q are formulas, then .P ! Q/ is a formula.

(CL) Any formula may be formed by repeated application of these rules.

At this stage, we simply identify formulas and sentences. For any sentential language
L, an expression is a sentence iff it is a formula.

FR is a first example of a recursive definition. Such definitions always build from
the parts to the whole. Frequently we can use “tree” diagrams to see how they work.
Thus, for example, by repeated applications of the definition, �.A! .�B ! A// is
a formula and sentence of Ls.

(D)

A B A These are formulas by FR(s)
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
��

�B

@
@
@

Since B is a formula, this is a formula by FR(�)

.�B ! A/

�
�
�

Since �B and A are formulas, this is a formula by FR(!)

.A! .�B ! A// Since A and .�B ! A/ are formulas, this is a formula by FR(!)

�.A! .�B ! A// Since .A! .�B ! A// is a formula, this is a formula by FR(�)
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By FR(s), the sentence letters, A, B and A are formulas; given this, clauses FR(�) and
FR(!) let us conclude that other, more complex, expressions are formulas as well.
Notice that, in the definition, P and Q may be any expressions that are formulas: By
FR(�), if B is a formula, then tilde followed by B is a formula; but similarly, if �B

and A are formulas, then an opening parenthesis followed by �B , followed by!
followed by A and then a closing parenthesis is a formula; and so forth as on the tree
above. You should follow through each step very carefully. In contrast, .A�B/ for
example, is not a formula. A is a formula and �B is a formula; but there is no way to
put them together, by the definition, without! in between.

A recursive definition always involves some “basic” starting elements, in this
case, sentence letters. These occur across the top row of our tree. Other elements
are constructed, by the definition, out of ones that come before. The last, closure,
clause tells us that any formula is built this way. To demonstrate that an expression is
a formula and a sentence, it is sufficient to construct it, according to the definition, on
a tree. If an expression is not a formula, there will be no way to construct it according
to the rules.

Here are a couple of last examples which emphasize the point that you must
maintain and respect parentheses in the way you construct a formula. Thus consider,

(E)

A

@
@
@

B

�
�
�

These are formulas by FR(s)

.A! B/ Since A and B are formulas, this is a formula by FR(!)

�.A! B/ Since .A! B/ is a formula, this is a formula by FR(�)

And compare it with,

(F)

A B

�
�
�
�
�
��

These are formulas by FR(s)

�A

@
@
@

Since A is a formula, this is a formula by FR(�)

.�A! B/ Since �A and B are formulas, this is a formula by FR(!)

Once you have .A ! B/ as in the first case, the only way to apply FR(�) puts the
tilde on the outside. To get the tilde inside the parentheses, by the rules, it has to go on
first, as in the second case. The significance of this point emerges immediately below.

It will be helpful to have some additional definitions, each of which may be
introduced in relation to the trees. First, for any formula P , each formula which
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appears in the tree for P including P itself is a subformula of P . Thus �.A! B/

has subformulas,

A B .A! B/ �.A! B/

In contrast, .�A! B/ has subformulas,

A B �A .�A! B/

So it matters for the subformulas how the tree is built. The immediate subformulas
of a formula P are the subformulas to which P is directly connected by lines. Thus
�.A! B/ has one immediate subformula, .A! B/; .�A! B/ has two, �A and
B . The atomic subformulas of a formula P are the sentence letters that appear across
the top row of its tree. Thus both �.A! B/ and .�A! B/ have A and B as their
atomic subformulas. Finally, the main operator of a formula P is the last operator
added in its tree. Thus � is the main operator of �.A ! B/, and! is the main
operator of .�A ! B/. So, again, it matters how the tree is built. We sometimes
speak of a formula by means of its main operator: A formula of the form �P is a
negation; a formula of the form .P ! Q/ is a (material) conditional, where P is the
antecedent of the conditional and Q is the consequent.

Parts of a Formula
The parts of a formula are here defined in relation to its tree.

SB Each formula which appears in the tree for formula P including P itself is a
subformula of P .

IS The immediate subformulas of a formula P are the subformulas to which P

is directly connected by lines.

AS The atomic subformulas of a formula P are the sentence letters that appear
across the top row of its tree.

MO The main operator of a formula P is the last operator added in its tree.

E2.3. For each of the following expressions, demonstrate that it is a formula and a
sentence of Ls with a tree. Then on the tree (i) bracket all the subformulas,
(ii) box the immediate subformula(s), (iii) star the atomic subformulas, and
(iv) circle the main operator. A first case for ..�A! B/! A/ is worked as
an example.
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A? B?

�
�
�
�
�
��

A?

�
�
�
�
�
�
�
�
�
��

These are formulas by FR(s)

�A

@
@
@

From A, formula by FR(�)

.�A! B/

@
@
@

From �A and B , formula by FR(!)

..�A! B/
�
 �	! A/ From .�A! B/ and A, formula by FR(!)

�
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*a. A

b. ���A

c. �.�A! B/

d. .�C ! �.A! �B//

e. .�.A! B/! .C ! �A//

E2.4. Explain why the following expressions are not formulas or sentences of Ls.
Hint: you may find that an attempted tree will help you see what is wrong.

a. .A � B/

*b. .P ! Q/

c. .�B/

d. .A! �B ! C /

e. ..A! B/! �.A! C /! D/

E2.5. For each of the following expressions, determine whether it is a formula and
sentence of Ls. If it is, show it on a tree, and exhibit its parts as in E2.3. If it
is not, explain why as in E2.4.

*a. �..A! B/! .�.A! B/! A//

b. �.A! B ! .�.A! B/! A//

*c. �.A! B/! .�.A! B/! A/
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d. ���.���A! ���A/

e. ..�.A! B/! .�C ! D//! �.�.E ! F /! G//

2.2.3 Abbreviations

We have completed the official grammar for our sentential languages. So far, the
languages are relatively simple. When we turn to reasoning about logic (in later parts),
it will be good to have our languages as simple as we can. However, for applications of
logic, it will be advantageous to have additional expressions which, though redundant
with expressions of the language already introduced, simplify the work. I begin by
introducing these additional expressions, and then turn to the question about how to
understand the redundancy.

Abbreviating. As may already be obvious, formulas of a sentential language like
Ls can get complicated quickly. Abbreviated forms give us ways to manipulate
official expressions without undue pain. First, for any formulas P and Q,

AB (_) .P _Q/ abbreviates .�P ! Q/

(^) .P ^Q/ abbreviates �.P ! �Q/

($) .P $ Q/ abbreviates �..P ! Q/! �.Q! P //

The last of these is easier than it looks; I say something about this below. _ is wedge,
^ is caret, and$ is double arrow. An expression of the form .P _Q/ is a disjunction
with P and Q as disjuncts; it has the standard reading, (P or Q). An expression of the
form .P ^Q/ is a conjunction with P and Q as conjuncts; it has the standard reading,
(P and Q). An expression of the form .P $ Q/ is a (material) biconditional; it has
the standard reading, (P iff Q).2 Again, we do not use ordinary English to define our
symbols. All the same, this should suggest how the extra operators extend the range
of what we are able to say in a natural way.

With the abbreviations, we are in a position to introduce derived clauses for FR.
Suppose P and Q are formulas; then by FR(�), �P is a formula; so by FR(!),
.�P ! Q/ is a formula; but this is just to say that .P _Q/ is a formula. And
similarly in the other cases. (If you are confused by such reasoning, work it out on a
tree.) Thus we arrive at the following conditions.

FR0 (_) If P and Q are formulas, then .P _Q/ is a formula.

2Common alternatives are & for ^, and� for$.
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(^) If P and Q are formulas, then .P ^Q/ is a formula.

($) If P and Q are formulas, then .P $ Q/ is a formula.

Once FR is extended in this way, the additional conditions may be applied directly in
trees. Thus, for example, if P is a formula and Q is a formula, we can safely move in
a tree to the conclusion that .P _Q/ is a formula by FR0(_). Similarly, for a more
complex case, ..A$ B/ ^ .�A _ B// is a formula.

(G)

A

@
@
@

B

�
�
�

A B

�
�
�
�
�
��

These are formulas by FR(s)

.A$ B/

\
\
\
\
\
\\

�A

@
@
@

These are formulas by FR0($) and FR(�)

.�A _ B/
����

��

This is a formula by FR0(_)

..A$ B/ ^ .�A _ B// This is a formula by FR0(^)

In a derived sense, expressions with the new symbols have subformulas, atomic
subformulas, immediate subformulas, and main operator all as before. Thus, with
notation from exercises, with bracket for subformulas, star for atomic subformulas, box
for immediate subformulas and circle for main operator, on the diagram immediately
above,

(H)

A?

@
@@

B?

�
��

A? B?

�
�
�
�
�
��

These are formulas by FR(s)

.A$ B/

\
\
\
\
\
\\

�A

@
@@

These are formulas by FR0($) and FR(�)

.�A _ B/
���

��

This is a formula by FR0(_)

..A$ B/
�
�	^ .�A _ B// This is a formula by FR0(^)

�
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In the derived sense, ..A$ B/ ^ .�A _ B// has immediate subformulas .A$ B/

and .�A _ B/, and main operator ^.
Return to the case of .P $ Q/ and observe that it can be thought of as based on a

simple abbreviation of the sort we expect. That is, ..P ! Q/ ^ .Q! P // is of the
sort .A ^B/; so by AB(^), it abbreviates �.A! �B/; but with .P ! Q/ for A

and .Q! P / for B, this is just, �..P ! Q/! �.Q! P // as in AB($). So you
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may think of .P $ Q/ as an abbreviation of ..P ! Q/ ^ .Q! P //, which in turn
abbreviates the more complex �..P ! Q/! �.Q! P //. This is what we expect:
a double arrow is like an arrow going from P to Q and an arrow going from Q to P .

A couple of additional abbreviations concern parentheses. First, it is sometimes
convenient to use a pair of square brackets [ ] in place of parentheses ( ). This is
purely for visual convenience; for example ((()())) may be more difficult to absorb
than ([()()]). Second, if the very last step of a tree for some formula P is justified by
FR(!), FR0(^), FR0(_), or FR0($), we feel free to abbreviate P with the outermost
set of parentheses or brackets dropped. Again, this is purely for visual convenience.
Thus, for example, we might write, A ! .B ! C / in place of .A ! .B ! C //.
As it turns out, where A, B, and C are formulas, there is a difference between
..A! B/! C/ and .A! .B ! C//, insofar as the main operator shifts from one
case to the other. In .A! B ! C/, however, it is not clear which arrow should be
the main operator. That is why we do not count the latter as a grammatical formula or
sentence. Similarly there is a difference between �.A! B/ and .�A! B/; again,
the main operator shifts. However, there is no room for ambiguity when we drop just
an outermost pair of parentheses and write .A! B/! C for ..A! B/! C/; and
similarly when we write A! .B ! C/ for .A! .B ! C//. The same reasoning
applies for abbreviations with ^, _, or$. So dropping outermost parentheses counts
as a legitimate abbreviation.

An expression which uses the extra operators, square brackets, or drops outermost
parentheses is a formula just insofar as it is a sort of shorthand for an official formula
which does not. But we will not usually distinguish between the shorthand expressions
and official formulas. Thus, again, the new conditions may be applied directly
in trees and, for example, the following is a legitimate tree to demonstrate that
A _ .ŒA! B� ^ B/ is a formula.

(I)

A

S
S
S
S
S
S
S
S
S
SS

A

@
@
@

B

�
�
�

B

�
�
�
�
�
��

Formulas by FR(s)

ŒA! B�
H
HHH

HH

Formula by FR(!), with [ ]

.ŒA! B� ^ B/
���

���

Formula by FR0(^)

A _ .ŒA! B� ^ B/ Formula by FR0(_), with outer ( ) dropped

So we use our extra conditions for FR0, introduce square brackets instead of parenthe-
ses, and drop parentheses in the very last step. Remember that the only case where
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you can omit parentheses is if they would have been added in the very last step of
the tree. So long as we do not distinguish between shorthand expressions and official
formulas, we regard a tree of this sort as sufficient to demonstrate that an expression
is a formula and a sentence.

Unabbreviating. As we have suggested, there is a certain tension between the
advantages of a simple language, and one that is more complex. When a language is
simple, it is easier to reason about; when it has additional resources, it is easier to use.
Expressions with ^, _ and$ are redundant with expressions that do not have them —
though it is easier to work with a language that has ^, _ and$ than with one that
does not (something like reciting the Pledge of Allegiance in English, and then in
Morse code; you can do it in either, but it is easier in the former). If all we wanted was
a simple language to reason about, we would forget about the extra operators. If all
we wanted was a language easy to use, we would forget about keeping the language
simple. To have the advantages of both, we have adopted the position that expressions
with the extra operators abbreviate, or are a shorthand for, expressions of the original
language. It will be convenient to work with abbreviations in many contexts. But,
when it comes to reasoning about the language, we set the abbreviations to the side,
and focus on the official language itself.

For this to work, we have to be able to undo abbreviations when required. It is, of
course, easy enough to substitute parentheses back for square brackets, or to replace
outermost dropped parentheses. For formulas with the extra operators, it is always
possible to work through trees, using AB to replace formulas with unabbreviated
forms, one operator at a time. Consider an example.

(J)

A

@
@@

B

�
��

A B

�
�
�
�
�
��

.A$ B/

\
\
\
\
\
\\

�A

@
@@

.�A_B/
��

���
..A$ B/^ .�A_B//

A

@
@@

B

�
��

A B

�
�
�
�
�
��

�..A! B/!�.B ! A//

\
\
\
\
\
\\

�A

@
@@

.��A! B/
��

���
�.�..A! B/!�.B ! A//!�.��A! B//

The tree on the left is (G) from above. The tree on the right uses AB to “unpack” each
of the expressions on the left. Atomics remain as before. Then, at each stage, given
an unabbreviated version of the parts, we give an unabbreviated version of the whole.
First, .A$ B/ abbreviates �..A! B/! �.B ! A//; this is a simple application
of AB($). �A is not an abbreviation and so remains as before. From AB(_), .P _Q/
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abbreviates .�P ! Q/ so .�A _ B/ abbreviates tilde the left disjunct, arrow the
right (so that we get two tildes). For the final result, we combine the input formulas
according to the unabbreviated form for ^. It is more a bookkeeping problem than
anything: There is one formula P that is .A$ B/, another Q that is .�A_B/; these
are combined into .P ^Q/ and so, by AB(^), into�.P ! �Q/. You should be able
to see that this is just what we have done. There is a tilde and a parenthesis; then the
P ; then an arrow and a tilde; then the Q, and a closing parenthesis. Not only is the
abbreviation more compact but, as we shall see, there is a corresponding advantage
when it comes to grasping what an expression says.

Here is a another example, this time from (I). In this case, we replace also square
brackets and restore dropped outer parentheses.

(K)

A

S
S
S
S
S
S
S
S
S
S

A

@
@@

B

�
��

B

�
�
�
�
�
��

ŒA! B�
HH

HHH
.ŒA! B�^B/
��

���
A_ .ŒA! B�^B/

A

S
S
S
S
S
S
S
S
S
S

A

@
@@

B

�
��

B

�
�
�
�
�
��

.A! B/
HH

HHH
�..A! B/!�B/

��
���

.�A!�..A! B/!�B//

In the right hand tree, we reintroduce parentheses for the square brackets. Similarly,
we apply AB(^) and AB(_) to unpack shorthand symbols. And outer parentheses are
reintroduced at the very last step. Thus A _ .ŒA ! B� ^ B/ is a shorthand for the
unabbreviated expression, .�A! �..A! B/! �B//.

Observe that right-hand trees are not ones of the sort you would use directly to
show that an expression is a formula by FR! FR does not let you move directly from
that .A! B/ is a formula and B is a formula, to the result that �..A! B/! �B/

is a formula as just above. Of course, if .A! B/ and B are formulas, then �..A!

B/! �B/ is a formula, and nothing stops a tree to show it. This is the point of our
derived clauses for FR0. In fact, this is a good check on your unabbreviations: If the
result is not a formula, you have made a mistake! But you should not think of trees
as on the right as involving application of FR. Rather they are unabbreviating trees,
with application of AB to shorthand expressions from trees as on the left. A fully
unabbreviated expression always meets all the requirements from section 2.2.2.

E2.6. For each of the following expressions, demonstrate that it is a formula and a
sentence of Ls with a tree. Then on the tree (i) bracket all the subformulas,
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(ii) box the immediate subformula(s), (iii) star the atomic subformulas, and
(iv) circle the main operator.

*a. .A ^ B/! C

b. �.ŒA! �K14� _ C3/

c. B ! .�A$ B/

d. .B ! A/ ^ .C _ A/

e. .A _�B/$ .C ^ A/

*E2.7. For each of the formulas in E2.6a - e, produce an unabbreviating tree to find
the unabbreviated expression it represents.

*E2.8. For each of the unabbreviated expressions from E2.7a - e, produce a complete
tree to show by direct application of FR that it is an official formula.

E2.9. In the text, we introduced derived clauses to FR by reasoning as follows,
“Suppose P and Q are formulas; then by FR(�), �P is a formula; so by
FR(!), .�P ! Q/ is a formula; but this is just to say that .P _Q/ is a
formula. And similarly in the other cases” (p. 42). Supposing that P and
Q are formulas, produce the similar reasoning to show that .P ^Q/ and
.P $ Q/ are formulas. Hint: Again, it may help to think about trees.

E2.10. For each of the following concepts, explain in an essay of about two pages, so
that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii)
where the concept applies, and (iv) where it does not. Your essay should
exhibit an understanding of methods from the text.

a. The vocabulary for a sentential language, and use of the metalanguage.

b. A formula of a sentential language.

c. The parts of a formula.

d. The abbreviation and unabbreviation for an official formula of a sentential
language.
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2.3 Quantificational Languages



Chapter 3

Axiomatic Deduction

We have not yet said what our sentences mean. This is just what we do in the next
chapter. However, just as it is possible to do grammar without reference to meaning, so
it is possible to do derivations without reference to meaning. Derivations are defined
purely in relation to formula and sentence form. That is why it is crucial to show that
derivations stand in important relations to validity and truth, as we do in ??. And that
is why it is possible to do derivations without knowing what the expressions mean.
In this chapter we develop an axiomatic derivation system without any reference to
meaning and truth. Apart from relations to meaning and truth, derivations are perfectly
well-defined — counting at least as a sort of puzzle or game with, perhaps, a related
“thrill of victory” and “agony of defeat.” And as with a game, it is possible to build
derivation skills, to become a better player. Later, we will show how derivation games
matter.1

Derivation systems are constructed for different purposes. Introductions to mathe-
matical logic typically employ an axiomatic approach. We will see a natural deduction
system in chapter 6. The advantage of axiomatic systems is their extreme simplicity.
From a practical point of view, when we want to think about logic, it is convenient
to have a relatively simple object to think about. The axiomatic approach makes it
natural to build toward increasingly complex and powerful results. As we will see,
however, in the beginning, axiomatic derivations can be relatively challenging! We
will introduce our system in stages: After some general remarks about what an axiom
system is supposed to be, we will introduce the sentential component of our system —

1This chapter is out of place. Having developed the grammar of our formal languages, a sensible
course in mathematical logic will skip directly to chapter 4 and return only after chapter 6. This chapter
has its location to crystallize the the point about form. One might reasonably attempt the first section,
but then return only after background from chapters that follow.

49
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the part with application to forms involving just� and! (and so _, ^, and$). After
that, we will turn to the full system for forms with quantifiers and equality, including
a mathematical application.

3.1 General

Before turning to the derivations themselves, it will be helpful to make some points
about the metalanguage and form. First, we are familiar with the idea that different
formulas may be of the same form. Thus, for example, where P and Q are formulas,
A! B and A! .B _ C / are both of the form, P ! Q — in the one case Q maps
to B , and in the other to .B _ C /. And, more generally, for formulas A; B; C , any
formula of the form A! .B _ C/ is also of the form P ! Q. For if .B _ C/ maps
onto some formula, Q maps onto that formula as well. Of course, this does not go the
other way around: it is not the case that every expression of the form P ! Q is of
the form A! .B _ C/; for it is not the case that B _ C maps to any expression to
onto which Q maps. Be sure you are clear about this! Using the metalanguage this
way, we can speak generally about formulas in arbitrary sentential or quantificational
languages. This is just what we will do — on the assumption that our script letters
A : : : Z range over formulas of some arbitrary formal language L, we frequently
depend on the fact that every formula of one form is also of another.

Given a formal language L, an axiomatic logic AL consists of two parts. There
is a set of axioms and a set of rules. Different axiomatic logics result from different
axioms and rules. For now, the set of axioms is just some privileged collection of
formulas. A rule tells us that one formula follows from some others. One way to
specify axioms and rules is by form. Thus, for example, modus ponens may be
included among the rules.

MP
P ! Q; P

P

According to this rule, for any formulas P and Q, the formula Q follows from P ! Q

together with P . Thus, as applied to Ls, B follows by MP from A! B and A; but
also .B $ D/ follows from .A! B/! .B $ D/ and .A! B/. And for a case
put in the metalanguage, quite generally, a formula of the form .A ^B/ follows from
A! .A ^B/ and A — for any formulas of the form A! .A ^B/ and A are of
the forms P ! Q and P as well. Axioms also may be specified by form. Thus, for
some language with formulas P and Q, a logic might include all formulas of the
forms,

^1 .P ^Q/! P ^2 .P ^Q/! Q ^3 P ! .Q! .P ^Q//
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among its axioms. Then in Ls,

.A ^ B/! A, .A ^ A/! A ..A! B/ ^ C /! .A! B/

are all axioms of form ^1. So far, for a given axiomatic logic AL, there are no
constraints on just which forms will be the axioms, and just which rules are included.
The point is only that we specify an axiomatic logic when we specify some collection
of axioms and rules.

Suppose we have specified some axioms and rules for an axiomatic logic AL.
Then where � (Gamma), is a set of formulas — taken as the formal premises of an
argument,

AV (p) If P is a premise (a member of �), then P is a consequence in AL of � .

(a) If P is an axiom of AL, then P is a consequence in AL of � .

(r) If Q1 : : : Qn are consequences in AL of � , and there is a rule of AL such
that P follows from Q1 : : : Qn by the rule, then P is a consequence in AL
of � .

(CL) Any consequence in AL of � may be obtained by repeated application of
these rules.

The first two clauses make premises and axioms consequences in AL of � . And if,
say, MP is a rule of an AL and P ! Q and P are consequences in AL of � , then
by AV(r), Q is a consequence in AL of � as well. If P is a consequence in AL of
some premises � , then the premises prove P in AL and equivalently the argument is
valid in AL; in this case we write �

ÀL
P . The ` symbol is the single turnstile (to

contrast with a double turnstile � from chapter 4). If Q1 : : : Qn are the members of
� , we sometimes write Q1 : : : Qn ÀL

P in place of �
ÀL

P . If � has no members
at all and �

ÀL
P , then P is a theorem of AL. In this case, listing all the premises

individually, we simply write,
ÀL

P .
Before turning to our official axiomatic system AD, it will be helpful to consider

a simple example. Suppose an axiomatic derivation system A1 has MP as its only
rule, and just formulas of the forms ^1, ^2, and ^3 as axioms. AV is a recursive
definition like ones we have seen before. Thus nothing stops us from working out its
consequences on trees. Thus we can show that A ^ .B ^ C/

À1
C ^B as follows,
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(A)

C ! .B! .C ^B//

A
A
A
A
A
A
A
A
AA

.B ^C/! C

\
\
\
\
\
\

A^ .B ^C/

HH
HHH

.A^ .B ^C//! .B ^C/

��
���

.B ^C/! B

,
,

,
,

,
,
,

B ^C
��

���

HH
HHH

C
�������

B

,
,
,

,
,
,
,

B! .C ^B/
XXXXXXXXXX

C ^B

For definition AV, the basic elements are the premises and axioms. These occur
across the top row. Thus, reading from the left, the first form is an instance of
^3. The second is of type ^2. These are thus consequences of � by AV(a). The
third is the premise. Thus it is a consequence by AV(p). Any formula of the form
.A ^ .B ^ C//! .B ^ C/ is of the form, .P ^Q/! Q; so the fourth is of the
type ^2. And the last is of the type ^1. So the final two are consequences by
AV(a). After that, all the results are by MP, and so consequences by AV(r). Thus
for example, in the first case, .A ^ .B ^ C//! .B ^ C/ and A ^ .B ^ C/ are of
the sort P ! Q and P , with A ^ .B ^ C/ for P and .B ^ C/ for Q; thus B ^ C

follows from them by MP. So B ^ C is a consequence in A1 of � by AV(r). And
similarly for the other consequences. Notice that applications of MP and of the axiom
forms are independent from one use to the next. The expressions that count as P or
Q must be consistent within a given application of the axiom or rule, but may vary
from one application of the axiom or rule to the next. If you are familiar with another
derivation system, perhaps the one from chapter 6, you may think of an axiom as a
rule without inputs. Then the axiom applies to expressions of its form in the usual
way.

These diagrams can get messy, and it is traditional to represent the same informa-
tion as follows, using annotations to indicate relations among formulas.
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(B)

1. A ^ .B ^ C/ p(remise)
2. .A ^ .B ^ C//! .B ^ C/ ^2
3. B ^ C 2,1 MP
4. .B ^ C/! B ^1
5. B 4,3 MP
6. .B ^ C/! C ^2
7. C 6,3 MP
8. C ! .B ! .C ^B// ^3
9. B ! .C ^B/ 8,7 MP

10. C ^B 9,5 MP

Each of the forms (1) - (10) is a consequence of A ^ .B ^ C/ in A1. As indicated
on the right, the first is a premise, and so a consequence by AV(p). The second is
an axiom of the form ^2, and so a consequence by AV(a). The third follows by MP
from the forms on lines (2) and (1), and so is a consequence by AV(r). And so forth.
Such a demonstration is an axiomatic derivation. This derivation contains the very
same information as the tree diagram (A), only with geometric arrangement replaced
by line numbers to indicate relations between forms. Observe that we might have
accomplished the same end with a different arrangement of lines. For example, we
might have listed all the axioms first, with applications of MP after. The important
point is that in an axiomatic derivation, each line is either an axiom, a premise, or
follows from previous lines by a rule. Just as a tree is sufficient to demonstrate that
�

ÀL
P , that P is a consequence of � in AL, so an axiomatic derivation is sufficient

to show the same. In fact, we shall typically use derivations, rather than trees to show
that �

ÀL
P .

Notice that we have been reasoning with sentence forms, and so have shown that a
formula of the form C ^B follows in A1 from one of the form A ^ .B ^ C/. Given
this, we freely appeal to results of one derivation in the process of doing another.
Thus, if we were to encounter a formula of the form A ^ .B ^ C/ in an A1 derivation,
we might simply cite the derivation (B) completed above, and move directly to the
conclusion that C ^B. The resultant derivation would be an abbreviation of an
official one which includes each of the above steps to reach C ^B. In this way,
derivations remain manageable, and we are able to build toward results of increasing
complexity. (Compare your high school experience of Euclidian geometry.) All of this
should become more clear, as we turn to the official and complete axiomatic system,
AD.

E3.1. Where A1 is as above with rule MP and axioms ^1-3, construct derivations to
show each of the following.
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*a. A ^ .B ^ C/
À1

B

b. A; B; C
À1

A ^ .B ^ C/

c. A ^ .B ^ C/
À1

.A ^B/ ^ C

d. .A ^B/ ^ .C ^D/
À1

B ^ C

e.
À1

..A ^B/! A/ ^ ..A ^B/! B/

Again, unless you have a special reason for studying axiomatic systems, or are
just looking for some really challenging puzzles, at this stage you should move on
to the next chapter and return only after chapter 6. This chapter makes sense here
to underline the conceptual point that derivations are defined apart from notions
of validity and truth, but it is completely out of order from a learning point of
view. After chapter 6 you can return to this chapter, but recognize its place in the
conceptual order.

3.2 Sentential

We begin by focusing on sentential forms, forms involving just � and! (and so
^, _ and$). The sentential component of our official axiomatic logic AD tells us
how to manipulate such forms, whether they be forms for expressions in a sentential
language like Ls, or in a quantificational language like Lq. The sentential fragment
of AD includes three forms for logical axioms, and one rule.

AS A1. P ! .Q! P /

A2. .O ! .P ! Q//! ..O ! P /! .O ! Q//

A3. .�Q! �P /! ..�Q! P /! Q/

MP Q follows from P ! Q and P

We have already encountered MP. To take some cases to appear immediately below,
the following are both of the sort A1.

A! .A! A/ .B ! C/! ŒA! .B ! C/�

Observe that P and Q need not be different! You should be clear about these cases.
Although MP is the only rule, we allow free movement between an expression and its
abbreviated forms, with justification, “abv.” That is it! As above, �

ÀDs
P just in



CHAPTER 3. AXIOMATIC DEDUCTION 55

case P is a consequence of � in AD. �
ÀDs

P just in case there is a derivation of P

from premises in � .
The following is a series of derivations where, as we shall see, each may depend

on ones from before. At first, do not worry so much about strategy, as about the
mechanics of the system.

T3.1.
ÀDs

A! A

1. A! .ŒA! A�! A/ A1
2. .A! .ŒA! A�! A//! ..A! ŒA! A�/! .A! A// A2
3. .A! ŒA! A�/! .A! A/ 2,1 MP
4. A! ŒA! A� A1
5. A! A 3,4 MP

Line (1) is an axiom of the form A1 with A! A for Q. Line (2) is an axiom of the
form A2 with A for O, A! A for P , and A for Q. Notice again that O and Q may
be any formulas, so nothing prevents them from being the same. Similarly, line (4)
is an axiom of form A1 with A in place of both P and Q. The applications of MP
should be straightforward.

T3.2. A! B; B ! C
ÀDs

A! C

1. B ! C prem
2. .B ! C/! ŒA! .B ! C/� A1
3. A! .B ! C/ 2,1 MP
4. ŒA! .B ! C/�! Œ.A! B/! .A! C/� A2
5. .A! B/! .A! C/ 4,3 MP
6. A! B prem
7. A! C 5,6 MP

Line (4) is an instance of A2 which gives us our goal with two applications of MP —
that is, from (4), A! C follows by MP if we have A! .B ! C/ and A! B. But
the second of these is a premise, so the only real challenge is getting A! .B ! C/.
But since B ! C is a premise, we can use A1 to get anything arrow it — and that is
just what we do by the first three lines.

T3.3. A! .B ! C/
ÀDs

B ! .A! C/

1. B ! .A! B/ A1
2. A! .B ! C/ prem
3. ŒA! .B ! C/�! Œ.A! B/! .A! C/� A2
4. .A! B/! .A! C/ 3,2 MP
5. B ! .A! C/ 1,4 T3.2
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In this case, the first four steps are very much like ones you have seen before. But
the last is not. We have B ! .A! B/ on line (1), and .A! B/! .A! C/ on
line (4). These are of the form to be inputs to T3.2 — with B for A, A! B for B,
and A! C for C . T3.2 is a sort of transitivity or “chain” principle which lets us
move from a first form to a last through some middle term. In this case, A! B is
the middle term. So at line (5), we simply observe that lines (1) and (4), together with
the reasoning from T3.2, give us the desired result.

What we have not produced is an official derivation, where each step is a premise,
an axiom, or follows from previous lines by a rule. But we have produced an abbrevi-
ation of one. And nothing prevents us from unabbreviating by including the routine
from T3.2 to produce a derivation in the official form. To see this, first, observe
that the derivation for T3.2 has its premises at lines (1) and (6), where lines with the
corresponding forms in the derivation for T3.3 appear at (4) and (1). However, it is a
simple matter to reorder the derivation for T3.2 so that it takes its premises from those
same lines. Thus here is another demonstration for T3.2.

(C)

1. A! B prem
:::

4. B ! C prem
5. .B ! C/! ŒA! .B ! C/� A1
6. A! .B ! C/ 5,4 MP
7. ŒA! .B ! C/�! Œ.A! B/! .A! C/� A2
8. .A! B/! .A! C/ 7,6 MP
9. A! C 8,1 MP

Compared to the original derivation for T3.2, all that is different is the order of a few
lines, and corresponding line numbers. The reason for reordering the lines is for a
merge of this derivation with the one for T3.3.

But now, although we are after expressions of the form A! B and B ! C , the
actual expressions we want for T3.3 are B ! .A! B/ and .A! B/! .A! C/.
But we can convert derivation (C) to one with those very forms by uniform substitua-
tion of B for every A; .A! B/ for every B; and .A! C/ for every C — that is,
we apply our original map to the entire derivation (C). The result is as follows.
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(D)

1. B ! .A! B/ prem
:::

4. .A! B/! .A! C/ prem
5. ..A! B/! .A! C//! ŒB ! ..A! B/! .A! C//� A1
6. B ! ..A! B/! .A! C// 5,4 MP
7. ŒB ! ..A! B/! .A! C//�! Œ.B ! .A! B//! .B ! .A! C//� A2
8. .B ! .A! B//! .B ! .A! C// 7,6 MP
9. B ! .A! C/ 8,1 MP

You should trace the parallel between derivations (C) and (D) all the way through.
And you should verify that (D) is a derivation on its own. This is an application
of the point that our derivation for T3.2 applies to any premises and conclusions of
that form. The result is a direct demonstration that B ! .A! B/; .A! B/ !

.A! C/
ÀDs

B ! .A! C/.
And now it is a simple matter to merge the lines from (D) into the derivation for

T3.3 to produce a complete demonstration that A! .B ! C/
ÀDs

B ! .A! C/.

(E)

1. B ! .A! B/ A1
2. A! .B ! C/ prem
3. ŒA! .B ! C/�! Œ.A! B/! .A! C/� A2
4. .A! B/! .A! C/ 3,2 MP
5. ..A! B/! .A! C//! ŒB ! ..A! B/! .A! C//� A1
6. B ! ..A! B/! .A! C// 5,4 MP
7. ŒB ! ..A! B/! .A! C//�! Œ.B ! .A! B//! .B ! .A! C//� A2
8. .B ! .A! B//! .B ! .A! C// 7,6 MP
9. B ! .A! C/ 8,1 MP

Lines (1) - (4) are the same as from the derivation for T3.3, and include what are the
premises to (D). Lines (5) - (9) are the same as from (D). The result is a demonstration
for T3.3 in which every line is a premise, an axiom, or follows from previous lines
by MP. Again, you should follow each step. It is hard to believe that we could think
up this last derivation — particularly at this early stage of our career. However, if
we can produce the simpler derivation, we can be sure that this more complex one
exists. Thus we can be sure that the final result is a consequence of the premise in AD.
That is the point of our direct appeal to T3.2 in the original derivation of T3.3. And
similarly in cases that follow. In general, we are always free to appeal to prior results
in any derivation — so that our toolbox gets bigger at every stage.

T3.4.
ÀDs

.B ! C/! Œ.A! B/! .A! C/�
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1. .B ! C/! ŒA! .B ! C/� A1
2. ŒA! .B ! C/�! Œ.A! B/! .A! C/� A2
3. .B ! C/! Œ.A! B/! .A! C/� 1,2 T3.2

Again, we have an application of T3.2. In this case, the middle term (the B) from
T3.2 maps to A! .B ! C/. Once we see that the consequent of what we want is
like the consequent of A2, we should be “inspired” by T3.2 to go for (1) as a link
between the antecedent of what we want, and antecedent of A2. As it turns out, this
is easy to get as an instance of A1. It is helpful to say to yourself in words, what the
various axioms and theorems do. Thus, given some P , A1 yields anything arrow it.
And T3.2 is a simple transitivity principle.

T3.5.
ÀDs

.A! B/! Œ.B ! C/! .A! C/�

1. .B ! C/! Œ.A! B/! .A! C/� T3.4
2. .A! B/! Œ.B ! C/! .A! C/� 1 T3.3

T3.5 is like T3.4 except that A! B and B ! C switch places. But T3.3 precisely
switches terms in those places — with B ! C for A, A! B for B, and A! C

for C . Again, often what is difficult about these derivations is “seeing” what you can
do. Thus it is good to say to yourself in words what the different principles give you.
Once you realize what T3.3 does, it is obvious that you have T3.5 immediately from
T3.4.

T3.6. B; A! .B ! C/
ÀDs

A! C

Hint: You can get this in the basic system using just A1 and A2. But you can
get it in just four lines if you use T3.3.

T3.7.
ÀDs

.�A! A/! A

Hint: This follows in just three lines from A3, with an instance of T3.1.

T3.8.
ÀDs

.�B ! �A/! .A! B/

1. .�B ! �A/! Œ.�B ! A/! B� A3
2. Œ.�B ! A/! B�! Œ.A! .�B ! A//! .A! B/� T3.4
3. A! .�B ! A/ A1
4. Œ.�B ! A/! B�! .A! B/ 2,3 T3.6
5. .�B ! �A/! .A! B/ 1,4 T3.2
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The idea behind this derivation is that the antecedent of A3 is the antecedent of our
goal. So we can get the goal by T3.2 with the instance of A3 on (1) and (4). That is,
given .�B ! �A/! X, what we need to get the goal by an application of T3.2 is
X ! .A! B/. But that is just what (4) is. The challenge is to get (4). Our strategy
uses T3.4, and then T3.6 with A1 to “delete” the middle term. This derivation is not
particularly easy to see. Here is another approach, which is not all that easy either.

(F)

1. .�B ! �A/! Œ.�B ! A/! B� A3
2. .�B ! A/! Œ.�B ! �A/! B� 1 T3.3
3. A! .�B ! A/ A1
4. A! Œ.�B ! �A/! B� 3,2 T3.2
5. .�B ! �A/! .A! B/ 4 T3.3

This derivation also begins with A3. The idea this time is to use T3.3 to “swing”
�B ! A out, “replace” it by A with T3.2 and A1, and then use T3.3 to “swing” A

back in.

T3.9.
ÀDs
�A! .A! B/

Hint: You can do this in three lines with T3.8 and an instance of A1.

T3.10.
ÀDs
��A! A

Hint: You can do this in three lines wih instances of T3.7 and T3.9.

T3.11.
ÀDs

A! ��A

Hint: You can do this in three lines with instances of T3.8 and T3.10.

*T3.12.
ÀDs

.A! B/! .��A! ��B/

Hint: Use T3.5 and T3.10 to get .A! B/! .��A! B/; then use T3.4,
and T3.11 to get .��A! B/! .��A! ��B/; the result follows easily
by T3.2.

T3.13.
ÀDs

.A! B/! .�B ! �A/

Hint: You can do this in three lines with instances of T3.8 and T3.12.
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T3.14.
ÀDs

.�A! B/! .�B ! A/

Hint: Use T3.4 and T3.10 to get .�B ! ��A/! .�B ! A/; the result
follows easily with an instance of T3.13.

T3.15.
ÀDs

.A! B/! Œ.�A! B/! B�

Hint: Use T3.13 and A3 to get .A! B/! Œ.�B ! A/! B�; then use
T3.5 and T3.14 to get Œ.�B ! A/! B�! Œ.�A! B/! B�; the result
follows easily by T3.2.

*T3.16.
ÀDs

A! Œ�B ! �.A! B/�

Hint: Use instances of T3.1 and T3.3 to get A! Œ.A! B/! B�; then use
T3.13 to “turn around” the consequent. This idea of deriving conditionals
in “reversed” form, and then using T3.13 or T3.14 to turn them around, is
frequently useful for getting tilde outside of a complex expression.

T3.17.
ÀDs

A! .A _B/

1. �A! .A! B/ T3.9
2. A! .�A! B/ 1 T3.3
3. A! .A _B/ 2 abv

We set as our goal the unabbreviated form. We have this at (2). Then, in the last line,
simply observe that the goal abbreviates what has already been shown.

T3.18.
ÀDs

A! .B _A/

Hint: Go for A! .�B ! A/. Then, as above, you can get the desired result
in one step by abv.

T3.19.
ÀDs

.A ^B/! B

T3.20.
ÀDs

.A ^B/! A

*T3.21. A! .B ! C/
ÀDs

.A ^B/! C
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T3.22. .A ^B/! C
ÀDs

A! .B ! C/

T3.23. A; A$ B
ÀDs

B

Hint: A$ B abbreviates the same thing as .A! B/ ^ .B ! A/; you may
thus move to this expression from A$ B by abv.

T3.24. B; A$ B
ÀDs

A

T3.25. �A; A$ B
ÀDs
�B

T3.26. �B; A$ B
ÀDs
�A

*E3.2. Provide derivations for T3.6, T3.7, T3.9, T3.10, T3.11, T3.12, T3.13, T3.14,
T3.15, T3.16, T3.18, T3.19, T3.20, T3.21, T3.22, T3.23, T3.24, T3.25, and
T3.26. As you are working these problems, you may find it helpful to refer to
the AD summary on p. ??.

E3.3. For each of the following, expand derivations to include all the steps from
theorems. The result should be a derivation in which each step is either a
premise, an axiom, or follows from previous lines by a rule. Hint: it may be
helpful to proceed in stages as for (C), (D) and then (E) above.

a. Expand your derivation for T3.7.

*b. Expand the above derivation for T3.4.

E3.4. Consider an axiomatic system A2 which takes ^ and � as primitive operators,
and treats P ! Q as an abbreviation for �.P ^�Q/. The axiom schemes
are,

A2 A1. P ! .P ^P /

A2. .P ^Q/! P

A3. .O ! P /! Œ�.P ^Q/! �.Q ^O/�
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MP is the only rule. Provide derivations for each of the following, where
derivations may appeal to any prior result (no matter what you have done).

*a. A! B; B ! C À2 �.�C ^A/ b. À2 �.�A ^A/

c. À2 ��A! A *d. À2 �.A ^B/! .B ! �A/

e. À2 A! ��A f. À2 .A! B/! .�B ! �A/

*g. �A! �B À2 B ! A h. A! B À2 .C ^A/! .B ^ C/

*i. A! B; B ! C ; C ! D À2 A! D j. À2 A! A

k. À2 .A ^B/! .B ^A/ l. A! B; B ! C À2 A! C

m. �B ! B À2 B n. B ! �B À2 �B

o. À2 .A ^B/! B p. A! B; C ! D À2 .A ^ C/! .B ^D/

q. B ! C À2 .A ^B/! .A ^ C/ r. A! B; A! C À2 A! .B ^ C/

s. À2 Œ.A ^B/ ^ C �! ŒA ^ .B ^ C/� t. À2 ŒA ^ .B ^ C/�! Œ.A ^B/ ^ C �

*u. À2 ŒA! .B ! C/�! Œ.A ^B/! C/� v. À2 Œ.A ^B/! C �! ŒA! .B ! C/�

*w. A! B; A! .B ! C/ À2 A! C x. À2 A! ŒB ! .A ^B/�

y. À2 A! .B ! A/

Hints: (i): Apply (a) to the first two premises and (f) to the third; then recognize
that you have the makings for an application of A3. (j): Apply A1, two
instances of (h), and an instance of (i) to get A! ..A ^A/ ^ .A ^A//; the
result follows easily with A2 and (i). (m): �B ! B is equivalent to�.�B ^

�B/; and �B ! .�B ^ �B/ is immediate from A2; you can turn this
around by (f) to get �.�B ^�B/! ��B; then it is easy. (u): Use abv so
that you are going for �ŒA ^��.B ^�C/�! �Œ.A ^B/ ^�C �; plan on
getting to this by (f); the proof then reduces to working from ..A ^B/ ^�C/.
(v): Structure your proof very much as with (u). (w): Use (u) to set up a “chain”
to which you can apply transitivity.

3.3 Quantificational



Chapter 4

Semantics

Having introduced the grammar for our formal languages and even (if you did not
skip the last chapter) done derivations in them, we need to say something about
semantics — about the conditions under which their expressions are true and false.
In addition to logical validity from chapter 1 and validity in AD from chapter 3, this
will lead to a third, semantic notion of validity. Again, the discussion divides into the
relatively simple sentential case, and then the full quantificational version. Recall that
we are introducing formal languages in their “pure” form, apart from associations with
ordinary language. Having discussed, in this chapter, conditions under which formal
expressions are true and not, in the next chapter, we will finally turn to translation,
and so to ways formal expressions are associated with ordinary ones.

4.1 Sentential

For any sentential or quantificational language, starting with a sentence and working
up its tree, let us say that its basic sentences are the first sentences without a truth
functional main operator. For a sentential language basic sentences are the sentence
letters, as the atomics are precisely the first sentences without a truth functional
operator. In the quantificational case, basic sentences may be more complex.1 In
this section, we treat basic sentences as atomic. Our initial focus is on forms with
just operators � and!. We begin with an account of the conditions under which
sentences are true and not true, learn to apply that account in arbitrary conditions, and

1Thus the basic sentences of A^B are just the atomic subformulas A and B . But Fa ^ 9xGx, has
atomic subformulas Fa and Gx, but basic sentences Fa and 9xGx since the latter does not have a truth
functional main operator.
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turn to validity. The section concludes with applications to our abbreviations, ^, _,
and$.

4.1.1 Interpretations and Truth

Sentences are true and false relative to an interpretation of basic sentences. In the
sentential case, the notion of an interpretation is particularly simple. For any formal
language L, a sentential interpretation assigns a truth value true or false, T or F, to
each of its basic sentences. Thus, for Ls we might have interpretations I and J,

(A)

I
A B C D E F G H

T T T T T T T T
. . .

J
A B C D E F G H

T T F F T T F F
. . .

When a sentence A is T on an interpretation I, we write I[A] = T, and when it is F, we
write, I[A] = F. Thus, in the above case, J[B] = T and J[C ] = F.

Truth for complex sentences depends on truth and falsity for their parts. In
particular, for any interpretation I,

ST (�) For any sentence P , I[�P ] = T iff I[P ] = F; otherwise I[�P ] = F.

(!) For any sentences P and Q, I[.P ! Q/] = T iff I[P ] = F or I[Q] = T (or
both); otherwise I[.P ! Q/] = F.

Thus a basic sentence is true or false depending on the interpretation. For complex
sentences, �P is true iff P is not true; and .P ! Q/ is true iff P is not true or Q is.
It is traditional to represent the information from ST(�) and ST(!) in the following
truth tables.

T(�)
P �P

T F
F T

T(!)

P Q P ! Q

T T T
T F F
F T T
F F T

From ST(�), we have that if P is F then �P is T; and if P is T then �P is F. This is
just the way to read table T(�) from left-to-right in the bottom row, and then the top
row. Similarly, from ST(!), we have that P ! Q is T in conditions represented by
the first, third and fourth rows of T(!). The only way for P ! Q to be F is when P

is T and Q is F as in the second row.
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ST works recursively. Whether a basic sentence is true comes directly from
the interpretation; truth for other sentences depends on truth for their immediate
subformulas — and can be read directly off the tables. As usual, we can use trees to
see how it works. As we build a the formula from its parts to the whole, so now we
calculate truth from the parts to the whole. Suppose I[A] = T, I[B] = F, and I[C ] = F.
Then I[�.A! �B/! C ] = T.

(B)

A.T/

L
L
L
L
L
LL

B.F/ C .F/

�
�
�
�
�
�
�
�
�
�
�
�
�
��

From I

�B.T/

�
�
�

By T(�), row 2

.A! �B/.T/ By T(!), row 1

�.A! �B/.F/

H
HHH

HH

By T(�), row 1

�.A! �B/! C .T/ By T(!), row 4

The basic tree is the same as the one that shows �.A ! �B/ ! C is a formula.
From the interpretation, A is T, B is F, and C is F. These are across the top. Since B

is F, from the bottom row of table T(�), �B is T. Since A is T and �B is T, reading
across the top row of the table T(!), A! �B is T. And similarly, according to the
tree, for the rest. You should carefully follow each step.

Here is the same formula considered on another interpretation. Where interpreta-
tion J is as on p. 64, J[�.A! �B/! C ] = F.

(C)

A.T/

L
L
L
L
L
LL

B.T/ C .F/

�
�
�
�
�
�
�
�
�
�
�
�
�
��

From J

�B.F/

�
�
�

By T(�), row 1

.A! �B/.F/ By T(!), row 2

�.A! �B/.T/

H
HHH

HH

By T(�), row 2

�.A! �B/! C .F/ By T(!), row 2
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This time, for both applications of ST(!), the antecedent is T and the consequent is F;
thus we are working on the second row of table T(!), and the conditionals evaluate
to F. Again, you should follow each step in the tree.

E4.1. Where the interpretation is as J from p. 64, with JŒA� = T, JŒB� = T and
JŒC � = F, use trees to decide whether the following sentences of Ls are T or F.

*a. �A b. ��C

c. A! C d. C ! A

*e. �.A! A/ *f. .�A! A/

g. �.A! �C /! C h. .�A! C /! C

*i. .A! �B/! �.B ! �A/ j. �.B ! �A/! .A! �B/

4.1.2 Arbitrary Interpretations

Sentences are true and false relative to an interpretation. But whether an argument
is semantically valid depends on truth and falsity relative to every interpretation. As
a first step toward determining semantic validity, in this section, we generalize the
method of the last section to calculate truth values relative to arbitrary interpretations.

First, any complex sentence has a finite number of basic sentences as components.
It is thus possible simply to list all the possible interpretations of those basic sentences.
If an expression has just one basic sentence A, then on any interpretation whatsoever,
that basic sentence must be T or F.

(D)
A

T
F

If an expression has basic sentences A and B, then the possible interpretations of its
basic sentences are,

(E)

A B

T T
T F
F T
F F

B can take its possible values, T and F when A is true, and B can take its possible
values, T and F when A is false. And similarly, every time we add a basic sentence,
we double the number of possible interpretations, so that n basic sentences always
have 2n possible interpretations. Thus the possible interpretations for three and four
basic sentences are,
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(F)

A B C

T T T
T T F
T F T
T F F

F T T
F T F
F F T
F F F

(G)

A B C D

T T T T
T T T F
T T F T
T T F F

T F T T
T F T F
T F F T
T F F F

F T T T
F T T F
F T F T
F T F F

F F T T
F F T F
F F F T
F F F F

Extra horizontal lines are added purely for visual convenience. There are 8 = 23

combinations with three basic sentences and 16 = 24 combinations with four. In
general, to write down all the possible combinations for n basic sentences, begin by
finding the total number r = 2n of combinations or rows. Then write down a column
with half that many (r=2) Ts and half that many (r=2) Fs; then a column alternating
half again as many (r=4) Ts and Fs; and a column alternating half again as many (r=8)
Ts and Fs — continuing to the nth column alternating groups of just one T and one F.
Thus, for example, with four basic sentences, r = 24 = 16; so we begin with a column
consisting of r=2 = 8 Ts and r=2 = 8 Fs; this is followed by a column alternating
groups of 4 Ts and 4 Fs, a column alternating groups of 2 Ts and 2 Fs, and a column
alternating groups of 1 T and 1 F. And similarly in other cases.

Given an expression involving, say, four basic sentences, we could imagine doing
trees for each of the 16 possible interpretations. But, to exhibit truth values for each
of the possible interpretations, we can reduce the amount of work a bit — or at least
represent it in a relatively compact form. Suppose I[A] = T, I[B] = F, and I[C ] = F,
and consider a tree as in (B) from above, along with a “compressed” version of the
same information.



CHAPTER 4. SEMANTICS 68

(H)

A.T/

L
L
L
L
L
LL

B.F/ C .F/

�
�
�
�
�
�
�
�
�
�
�
�
�
��

�B.T/

�
�
�

.A! �B/.T/

�.A! �B/.F/

HHH
HHH

�.A! �B/! C .T/

A B C � .A ! �B/ ! C

T F F F T T T F T F

In the table on the right, we begin by simply listing the interpretation we will consider
in the lefthand part: A is T, B is F and C is F. Then, under each basic sentence, we
put its truth value, and for each formula, we list its truth value under its main operator.
Notice that the calculation must proceed precisely as it does in the tree. It is because
B is F, that we put T under the second �. It is because A is T and �B is T that we
put a T under the first !. It is because .A ! �B/ is T that we put F under the
first �. And it is because �.A ! �B/ is F and C is F that we put a T under the
second!. In effect, then, we work “down” through the tree, only in this compressed
form. We might think of truth values from the tree as “squished” up into the one row.
Because there is a T under its main operator, we conclude that the whole formula,
�.A! �B/! C is T when I[A] = T, I[B] = F, and I[C ] = F. In this way, we might
conveniently calculate and represent the truth value of �.A ! �B/ ! C for all
eight of the possible interpretations of its basic sentences.

(I)

A B C � .A ! �B/ ! C

T T T T T F F T T T
T T F T T F F T F F
T F T F T T T F T T
T F F F T T T F T F

F T T F F T F T T T
F T F F F T F T T F
F F T F F T T F T T
F F F F F T T F T F

The emphasized column under the second! indicates the truth value of �.A !

�B/ ! C for each of the interpretations on the left — which is to say, for every
possible interpretation of the three basic sentences. So the only way for �.A !

�B/! C to be F is for C to be F, and A and B to be T. Our above tree (H) represents
just the fourth row of this table.



CHAPTER 4. SEMANTICS 69

In practice, it is easiest to work these truth tables “vertically.” For this, begin
with the basic sentences in some standard order along with all their possible inter-
pretations in the left-hand column. For Ls let the standard order be alphanumeric
(A; A1; A2 : : : ; B; B1; B2 : : : ; C : : :). And repeat truth values for basic sentences un-
der their occurrences in the formula (this is not crucial, since truth values for basic
sentences are already listed on the left; it will be up to you whether to repeat values
for basic sentences). This is done in table (J) below.

(J)

A B C � .A ! �B/ ! C

T T T T T T
T T F T T F
T F T T F T
T F F T F F

F T T F T T
F T F F T F
F F T F F T
F F F F F F

(K)

A B C � .A ! �B/ ! C

T T T T F T T
T T F T F T F
T F T T T F T
T F F T T F F

F T T F F T T
F T F F F T F
F F T F T F T
F F F F T F F

Now, given the values for B as in (J), we are in a position to calculate the values for
�B; so get the T(�) table in you mind, put your eye on the column under B in the
formula (or on the left if you have decided not to repeat the values for B under its
occurrence in the formula). Then fill in the column under the second �, reversing the
values from under B . This is accomplished in (K). Given the values for A and �B ,
we are now in a position to calculate values for A! �B; so get the T(!) table in
your head, and put your eye on the columns under A and �B . Then fill in the column

It is worth asking what happens if basic sentences are listed in some order other
than alphanumeric.

A B

T T
T F
F T
F F

��
�*����

HHHjHH
HY

B A

T T
T F
F T
F F

All the combinations are still listed, but their locations in a
table change.

Each of the above tables lists all of the combinations for the basic sentences. But
the first table has the interpretation I with I[A] = T and I[B] = F in the second row,
where the second table has this combination in the third. Similarly, the tables
exchange rows for the interpretation J with J[A] = F and J[B] = T. As it turns
out, the only real consequence of switching rows is that it becomes difficult to
compare tables as, for example, with the back of the book. And it may matter as
part of the standard of correctness for exercises!
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under the first!, going with F only when A is T and �B is F. This is accomplished
in (L).

(L)

A B C � .A ! �B/ ! C

T T T T F F T T
T T F T F F T F
T F T T T T F T
T F F T T T F F

F T T F T F T T
F T F F T F T F
F F T F T T F T
F F F F T T F F

(M)

A B C � .A ! �B/ ! C

T T T T T F F T T
T T F T T F F T F
T F T F T T T F T
T F F F T T T F F

F T T F F T F T T
F T F F F T F T F
F F T F F T T F T
F F F F F T T F F

Now we are ready to fill in the column under the first �. So get the T(�) table in your
head, and put your eye on the column under the first!. The column is completed in
table (M). And the table is finished as in (I) by completing the column under the last
!, based on the columns under the first � and under the C . Notice again, that the
order in which you work the columns exactly parallels the order from the tree.

As another example, consider these tables for �.B ! A/, the first with truth
values repeated under basic sentences, the second without.

(N)

A B � .B ! A/

T T F T T T
T F F F T T
F T T T F F
F F F F T F

(O)

A B � .B ! A/

T T F T
T F F T
F T T F
F F F T

We complete the table as before. First, with our eye on the columns under B and
A, we fill in the column under!. Then, with our eye on that column, we complete
the one under �. For this, first, notice that � is the main operator. You would not
calculate �B and then the arrow! Rather, your calculations move from the smaller
parts to the larger; so the arrow comes first and then the tilde. Again, the order is
the same as on a tree. Second, if you do not repeat values for basic formulas, be
careful about B ! A; the leftmost column of table (O), under A, is the column for the
consequent and the column immediately to its right, under B , is for the antecedent; in
this case, then, the second row under arrow is T and the third is F. Though it is fine to
omit columns under basic sentences, as they are already filled in on the left side, you
should not skip other columns, as they are essential building blocks for the final result.

E4.2. For each of the following sentences of Ls construct a truth table to determine
its truth value for each of the possible interpretations of its basic sentences.

*a. ��A
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b. �.A! A/

c. .�A! A/

*d. .�B ! A/! B

e. �.B ! �A/! B

f. .A! �B/! �.B ! �A/

*g. C ! .A! B/

h. ŒA! .C ! B/�! Œ.A! C /! .A! B/�

*i. .�A! B/! .�C ! D/

j. �.A! �B/! �.C ! �D/

4.1.3 Validity

As we have seen, sentences are true and false relative to an interpretation. For any
interpretation, a complex sentence has some definite value. But whether an argument is
sententially valid depends on truth and falsity relative to every interpretation. Suppose
a formal argument has premises P1 : : : Pn and conclusion Q. Then,

P1 : : : Pn sententially entail Q (P1 : : : Pn �s Q) iff there is no sentential inter-
pretation I such that IŒP1� = T and . . . and IŒPn� = T but IŒQ� = F.

We can put this more generally as follows. Suppose � (Gamma) is a set of formulas —
these are the premises. Say I[�] = T iff I[P ] = T for each P in � . Then,

SV � sententially entails Q (� �
s

Q) iff there is no sentential interpretation I such
that I[�] = T but I[Q] = F.

Where the members of � are P1 : : : Pn, this says the same thing as before. �

sententially entails Q when there is no sentential interpretation that makes each
member of � true and Q false. If � sententially entails Q we say the argument whose
premises are the members of � and conclusion is Q is sententially valid. � does
not sententially entail Q (� ²

s
Q) when there is some sentential interpretation on

which all the members of � are true, but Q is false. We can think of the premises as
constraining the interpretations that matter: for validity it is just the interpretations
where the members of � are all true, on which the conclusion Q cannot be false. If
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� has no members then there are no constraints on relevant interpretations, and the
conclusion must be true on every interpretation in order for it to be valid. In this case
where there are no premises, we simply write �

s
Q, and if Q is valid it is logically true

(a tautology). Notice the new double turnstile � for this semantic notion, in contrast
to the single turnstile ` for derivations from chapter 3.

Given that we are already in a position to exhibit truth values for arbitrary inter-
pretations, it is a simple matter to determine whether an argument is sententially valid.
Where the premises and conclusion of an argument include basic sentences B1 : : : Bn,
begin by calculating the truth values of the premises and conclusion for each of the
possible interpretations for B1 : : : Bn. Then look to see if any interpretation makes
all the premises true but the conclusion false. If no interpretation makes the premises
true and the conclusion not, then by SV, the argument is sententially valid. If some
interpretation does make the premises true and the conclusion false, then it is not
valid.

Thus, for example, suppose we want to know whether the following argument is
sententially valid.

(P)

.�A! B/! C

B

C

By SV, the question is whether there is an interpretation that makes the premises
true and the conclusion not. So we begin by calculating the values of the premises
and conclusion for each of the possible interpretations of the basic sentences in the
premises and conclusion.

A B C .�A ! B/ ! C B / C

T T T F T T T T T T T
T T F F T T T F F T F
T F T F T T F T T F T
T F F F T T F F F F F

F T T T F T T T T T T
F T F T F T T F F T F
F F T T F F F T T F T
F F F T F F F T F F F

Now we simply look to see whether any interpretation makes all the premises true
but the conclusion not. Interpretations represented by the top row, ones that make A,
B , and C all T, do not make the premises true and the conclusion not, because both
the premises and the conclusion come out true. In the second row, the conclusion is
false, but the first premise is false as well; so not all the premises are true and the
conclusion is false. In the third row, we do not have either all the premises true or the
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conclusion false. In the fourth row, though the conclusion is false, the premises are
not true. In the fifth row, the premises are true, but the conclusion is not false. In the
sixth row, the first premise is not true, and in the seventh and eighth rows, the second
premise is not true. So no interpretation makes the premises true and the conclusion
false. So by SV, .�A! B/! C , B �

s
C . Notice that the only column that matters

for a complex formula is the one under its main operator — the one that gives the
value of the sentence for each of the interpretations; the other columns exist only to
support the calculation of the value of the whole.

In contrast, �Œ.B ! A/ ! B� ²
s
�.A ! B/. That is, an argument with

premise, �Œ.B ! A/! B� and conclusion �.A! B/ is not sententially valid.

(Q)

A B � Œ.B ! A/ ! B� / � .A ! B/

T T F T T T T T F T T T
T F T F T T F F T T F F
F T F T F F T T F F T T
F F T F T F F F F F T F (

In the first row, the premise is F. In the second, the conclusion is T. In the third,
the premise is F. However, in the last, the premise is T, and the conclusion is F. So
there are interpretations (any interpretation that makes A and B both F) that make the
premise T and the conclusion not true. So by SV, �Œ.B ! A/! B� ²

s
�.A! B/,

and the argument is not sententially valid. All it takes is one interpretation that makes
all the premises T and the conclusion F to render an argument not sententially valid.
Of course, there might be more than one, but one is enough!

As a final example, consider table (I) for �.A ! �B/ ! C on p. 68 above.
From the table, there is an interpretation where the sentence is not true. Thus, by SV,
²

s
�.A! �B/! C . A sentence is valid only when it is true on every interpretation.

Since there is an interpretation on which it is not true, the sentence is not valid (not a
logical truth).

Since all it takes to demonstrate invalidity is one interpretation on which all the
premises are true and the conclusion is false, we do not actually need an entire table to
demonstrate invalidity. You may decide to produce a whole truth table in order to find
an interpretation to demonstrate invalidity. But we can sometimes work “backward”
from what we are trying to show to an interpretation that does the job. Thus, for
example, to find the result from table (Q), we need an interpretation on which the
premise is T and the conclusion is F. That is, we need a row like this,

(R)
A B � Œ.B ! A/ ! B� / � .A ! B/

T F

In order for the premise to be T, the conditional in the brackets must be F. And in
order for the conclusion to be F, the conditional must be T. So we can fill in this much.
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(S)
A B � Œ.B ! A/ ! B� / � .A ! B/

T F F T

Since there are three ways for an arrow to be T, there is not much to be done with the
conclusion. But since the conditional in the premise is F, we know that its antecedent
is T and consequent is F. So we have,

(T)
A B � Œ.B ! A/ ! B� / � .A ! B/

T T F F F T

That is, if the conditional in the brackets is F, then .B ! A/ is T and B is F. But now
we can fill in the information about B wherever it occurs. The result is as follows.

(U)
A B � Œ.B ! A/ ! B� / � .A ! B/

F T F T F F F T F

Since the first B in the premise is F, the first conditional in the premise is T irrespective
of the assignment to A. But, with B false, the only way for the conditional in the
argument’s conclusion to be T is for A to be false as well. The result is our completed
row.

(V)
A B � Œ.B ! A/ ! B� / � .A ! B/

F F T F T F F F F F T F

And we have recovered the row that demonstrates invalidity — without doing the
entire table. In this case, the full table had only four rows, and we might just as
well have done the whole thing. However, when there are many rows, this “shortcut”
approach can be attractive. A disadvantage is that sometimes it is not obvious just how
to proceed. In this example each stage led to the next. At stage (S), there were three
ways to make the conclusion true. We were able to proceed insofar as the premise
forced the next step. But it might have been that neither the premise nor the conclusion
forced a definite next stage. In this sort of case, you might decide to do the whole
table, just so that you can grapple with all the different combinations in an orderly
way.

Notice what happens when we try this approach with an argument that is not
invalid. Returning to argument (P) above, suppose we try to find a row where the
premises are T and the conclusion is F. That is, we set out to find a row like this,

(W)
A B C .�A ! B/ ! C B / C

T T F

Immediately, we are in a position to fill in values for B and C .

(X)
A B C .�A ! B/ ! C B / C

T F T T F T F

Since the first premise is a true arrow with a false consequent, its antecedent .�A!

B/ must be F. But this requires that �A be T and that B be F.
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(Y)
A B C .�A ! B/ ! C B / C

T F T F F/T T F T F

And there is no way to set B to F, as we have already seen that it has to be T in order
to keep the second premise true — and no interpretation makes B both T and F. At
this stage, we know, in our hearts, that there is no way to make both of the premises
true and the conclusion false. In Part II we will turn this knowledge into an official
mode of reasoning for validity. However, for now, let us consider a single row of a
truth table (or a marked row of a full table) sufficient to demonstrate invalidity, but
require a full table, exhibiting all the options, to show that an argument is sententially
valid.

You may encounter odd situations where premises are never T, where conclusions
are never F, or whatever. But if you stick to the definition, always asking whether
there is any interpretation of the basic sentences that makes all the premises T and the
conclusion F, all will be well.

E4.3. For each of the following, use truth tables to decide whether the entailment
claims hold. Notice that a couple of the tables are already done from E4.2.

*a. A! �A �
s
�A

b. �A! A �
s
�A

*c. A! B , �A �
s
�B

d. A! B , �B �
s
�A

e. �.A! �B/ �
s

B

f. �
s

C ! .A! B/

*g. �
s

ŒA! .C ! B/�! Œ.A! C /! .A! B/�

h. .A! B/! �.B ! A/, �A, �B �
s
�.C ! C /

i. ŒA! �.B ! �C /�, ŒB ! .�C ! D/� �
s

A! �.B ! �D/

j. �Œ.A! �.B ! �C //! D�, �D ! A �
s

C
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4.1.4 Abbreviations

We turn finally to applications for our abbreviations. Consider, first, a truth table for
P _Q, that is for �P ! Q.

T(_)

P Q �P ! Q

T T F T T T
T F F T T F
F T T F T T
F F T F F F

so that

P Q P _ Q

T T T
T F T
F T T
F F F

When P is T and Q is T, P _Q is T; when P is T and Q is F, P _Q is T; and so
forth. Thus, when P is T and Q is T, we know that P _Q is T, without going through
all the steps to get there in the unabbreviated form. Just as when P is a formula and
Q is a formula, we move directly to the conclusion that P _Q is a formula without
explicitly working all the intervening steps, so if we know the truth value of P and the
truth value of Q, we can move in a tree by the above table to the truth value of P _Q

without all the intervening steps. And similarly for the other abbreviating sentential
operators. For ^,

T(^)

P Q � .P ! �Q/

T T T T F F T
T F F T T T F
F T F F T F T
F F F F T T F

so that

P Q P ^ Q

T T T
T F F
F T F
F F F

And for ($),

T($)

P Q � Œ.P ! Q/ ! � .Q ! P /�

T T T T T T F F T T T
T F F T F F T F F T T
F T F F T T T T T F F
F F T F T F F F F T F

so that

P Q P $ Q

T T T
T F F
F T F
F F T

As a help toward remembering these tables, notice that P _Q is F only when P is F
and Q is F; P ^Q is T only when P is T and Q is T; and P $ Q is T only when P

and Q are the same and F when P and Q are different. We can think of these clauses
as representing derived clauses T0(_), T0(^), and T0($) to the definition for truth.

And nothing prevents direct application of the derived tables in trees. Suppose, for
example, I[A] = T, I[B] = F, and I[C ] = T. Then I[.B ! A/$ Œ.A^B/_�C ] = F.
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(Z)

B.F/

@
@
@

A.T/

�
�
�

A.T/

@
@
@

B.F/

�
�
�

C .T/ From I

.B ! A/.T/

l
l
l
l
l
l
l
l

.A ^ B/.F/

Q
Q
Q
Q

�C .F/

�
�

�
�

T(!); T0(^), row 2; T(�)

Œ.A ^ B/ _�C �.F/

!!!!!!!

T0(_), row 4

.B ! A/$ Œ.A ^ B/ _�C �.F/ T0($), row 2

We might get the same result by working through the full tree for the unabbreviated
form. But there is no need. When A is T and B is F, we know that .A^B/ is F; when
.A ^ B/ is F and �C is F, we know that Œ.A ^ B/ _ C � is F; and so forth. Thus we
move through the tree directly by the derived tables.

Similarly, we can work directly with abbreviated forms in truth tables.

(AA)

A B C .B ! A/ $ Œ.A ^ B/ _ �C �

T T T T T T T T T T T F T
T T F T T T T T T T T T F
T F T F T T F T F F F F T
T F F F T T T T F F T T F

F T T T F F T F F T F F T
F T F T F F F F F T T T F
F F T F T F F F F F F F T
F F F F T F T F F F T T F

Tree (Z) represents just the third row of this table. As before, we construct the table
“vertically,” with tables for abbreviating operators in mind as appropriate.

Finally, given that we have tables for abbreviated forms, we can use them for
evaluation of arguments with abbreviated forms. Thus, for example, A$ B , A �

s

There are a couple of different ways tables for our operators can be understood:
First, as we shall see in ??, it is possible to take tables for operators other than
� and ! as basic, say, just T(�) and T(_), or just T(�) and T(^), and then
abbreviate! in terms of them. Challenge: What expression involving just � and
_ has the same table as!? what expression involving just � and ^? Another
option is to introduce all five as basic. Then the task is not showing that the
table for _ is TTTF — that is given; rather we simply notice that P _Q, say,
is redundant with �P ! Q. Again, our approach with � and! basic has the
advantage of preserving relative simplicity in the basic language (though other
minimal approaches would do so as well).
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A ^ B .

(AB)

A B .A $ B/ A / .A ^ B/

T T T T T T T T T
T F T F F T T F F
F T F F T F F F T
F F F T F F F F F

There is no row where each of the premises is true and the conclusion is false. So the
argument is sententially valid. And, from either of the following rows,

(AC)
A B C D Œ.B ! A/ ^ .�C _ D/� Œ.A $ �D/ ^ .�D ! B/� / B

F F T T F T F T F T T T F T F T T F T T F F
F F F T F T F T T F T T F T F T T F T T F F

we may conclude that Œ.B ! A/^ .�C _D/�, Œ.A$ �D/^ .�D ! B/� ²
s

B . In
this case, the shortcut table is attractive relative to the full version with sixteen rows!

E4.4. For each of the following, use truth tables to decide whether the entailment
claims hold.

a. �
s

A _�A

b. A$ Œ�A$ .A ^�A/�, A! �.A$ A/ �
s
�A! A

*c. B _�C �
s

B ! C

*d. A _ B , �C ! �A, �.B ^�C / �
s

C

e. A! .B _ C /, C $ B , �C �
s
�A

f. �.A ^�B/ �
s
�A _ B

g. A ^ .B ! C / �
s

.A ^ B/ _ .A ^ C /

*h. �
s
�.A$ B/$ .A ^�B/

i. A _ .B ^�C /, �.�B _ C /! �A �
s
�A$ �.C _�B/

j. A _ B , �D ! .C _ A/ �
s

B $ �C

E4.5. For each of the following, use truth tables to decide whether the entailment
claims hold. Hint: the trick here is to identify the basic sentences. After that,
everything proceeds in the usual way with truth values assigned to the basic
sentences.
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Semantics Quick Reference (Sentential)
For any formal language L, a sentential interpretation assigns a truth value true or
false, T or F, to each of its basic sentences. Then for any interpretation I,

ST (�) For any sentence P , I[�P ] = T iff I[P ] = F; otherwise I[�P ] = F.

(!) For any sentences P and Q, I[.P ! Q/] = T iff I[P ] = F or I[Q] = T
(or both); otherwise I[.P ! Q/] = F.

And for abbreviated expressions,

ST0 (^) For any sentences P and Q, I[.P ^Q/] = T iff I[P ] = T and I[Q] = T;
otherwise I[.P ^Q/] = F.

(_) For any sentences P and Q, I[.P _Q/] = T iff I[P ] = T or I[Q] = T (or
both); otherwise I[.P _Q/] = F.

($) For any sentences P and Q, I[.P $ Q/] = T iff I[P ] = I[Q]; otherwise
I[.P $ Q/] = F.

If � (Gamma) is a set of formulas, I[�] = T iff I[P ] = T for each P in � . Then,
where the members of � are the formal premises of an argument, and sentence P

is its conclusion,

SV � sententially entails P iff there is no sentential interpretation I such that I[�]
= T but I[P ] = F.

We treat a single row of a truth table (or a marked row of a full table) as sufficient
to demonstrate invalidity, but require a full table, exhibiting all the options, to show
that an argument is sententially valid.

*a. 9xAx ! 9xBx, �9xAx �
s
9xBx

b. 8xAx ! �9x.Ax ^ 8yBy/, 9x.Ax ^ 8yBy/ �
s
�8xAx

E4.6. For each of the following concepts, explain in an essay of about two pages, so
that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii)
where the concept applies, and (iv) where it does not. Your essay should
exhibit an understanding of methods from the text.
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a. Sentential interpretations and truth for complex sentences.

b. Sentential validity.

4.2 Quantificational



Chapter 5

Translation

We have introduced logical validity from chapter 1, along with notions of semantic
validity from chapter 4, and validity in an axiomatic derivation system from chapter 3.
But logical validity applies to arguments expressed in ordinary language, where the
other notions apply to arguments expressed in a formal language. Our guiding idea has
been to use the formal notions with application to ordinary arguments via translation
from ordinary language to the formal ones. It is to the translation task that we now
turn. After some general discussion, we will take up issues specific to the sentential,
and then the quantificational, cases.

5.1 General

As speakers of ordinary languages (at least English for those reading this book)
we presumably have some understanding of the conditions under which ordinary
language sentences are true and false. Similarly, we now have an understanding of
the conditions under which sentences of our formal languages are true and false. This
puts us in a position to recognize when the conditions under which ordinary sentences
are true are the same as the conditions under which formal sentences are true. And
that is what we want: Our goal is to translate the premises and conclusion of ordinary
arguments into formal expressions that are true when the ordinary sentences are true,
and false when the ordinary sentences are false. Insofar as validity has to do with
conditions under which sentences are true and false, our translations should thus be
an adequate basis for evaluations of validity.

We can put this point with greater precision. Formal sentences are true and false
relative to interpretations. As we have seen, many different interpretations of a formal
language are possible. In the sentential case, any sentence letter can be true or false

81
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— so that there are 2n ways to interpret any n sentence letters. When we specify an
interpretation, we select just one of the many available options. Thus, for example,
we might set IŒB� = T and IŒH � = F. But we might also specify an interpretation as
follows,

(A)
B: Bill is happy

H : Hillary is happy

intending B to take the same truth value as ‘Bill is happy’ and H the same as
‘Hillary is happy’. In this case, the single specification might result in different
interpretations, depending on how the world is: Depending on how Bill and Hillary
are, the interpretation of B might be true or false, and similarly for H. That is,
specification (A) is really a function from ways the world could be (from complete
and consistent stories) to interpretations of the sentence letters. It results in a specific
or intended interpretation relative to any way the world could be. Thus, where !

(omega) ranges over ways the world could be, (A) is a function II which results in an
intended interpretation II! corresponding to any such way — thus II! ŒB� is T if Bill is
happy at ! and F if he is not.

When we set out to translate some ordinary sentences into a formal language,
we always begin by specifying an intended interpretation of the formal language for
arbitrary ways the world can be. In the sentential case, this typically takes the form
of a specification like (A). Then for any way the world can be ! there is an intended
interpretation II! of the formal language. Given this, for an ordinary sentence A,
the aim is to produce a formal counterpart A0 such that II! ŒA0� = T iff the ordinary
A is true in world !. This is the content of saying we want to produce formal
expressions that “are true when the ordinary sentences are true, and false when the
ordinary sentences are false.” In fact, we can turn this into a criterion of goodness for
translation.

CG Given some ordinary sentence A, a translation consisting of an interpreta-
tion function II and formal sentence A0 is good iff it captures available sen-
tential/quantificational structure and, where ! is any way the world can be,
II! ŒA0� = T iff A is true at !.

If there is a collection of sentences, a translation is good given an II where each
member A of the collection of sentences has an A0 such that II! ŒA0� = T iff A is true
at !. Set aside the question of what it is to capture “available” sentential/quantifica-
tional structure, this will emerge as we proceed. For now, the point is simply that
we want formal sentences to be true on intended interpretations when originals are
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true at corresponding worlds, and false on intended interpretations when originals are
false. CG says that this correspondence is necessary for goodness. And, supposing
that sufficient structure is reflected, according to CG such correspondence is sufficient
as well.

The situation might be pictured as follows. There is a specification II which
results in an intended interpretation corresponding to any way the world can be. And
corresponding to ordinary sentences P and Q there are formal sentences P 0 and Q0.
Then,

#
"

 
!

P : true
Q: true

!1

*II

#
"

 
!

II!1
ŒP 0� = T

II!1
ŒQ0� = T

#
"

 
!

P : true
Q: false

!2

*II

#
"

 
!

II!2
ŒP 0� = T

II!2
ŒQ0� = F

#
"

 
!

P : false
Q: true

!3

*II

#
"

 
!

II!3
ŒP 0� = F

II!3
ŒQ0� = T

#
"

 
!

P : false
Q: false

!4

*II

#
"

 
!

II!4
ŒP 0� = F

II!4
ŒQ0� = F

The interpretation function results in an intended interpretation corresponding to each
world. The translation is good only if no matter how the world is, the values of P 0 and
Q0 on the intended interpretations match the values of P and Q at the corresponding
worlds or stories.

The premises and conclusion of an argument are some sentences. So the translation
of an argument is good iff the translation of the sentences that are its premises and
conclusion is good. And good translations of arguments put us in a position to use
our machinery to evaluate questions of validity. Of course, so far, this is an abstract
description of what we are about to do. But it should give some orientation, and help
you understand what is accomplished as we proceed.

5.2 Sentential

We begin with the sentential case. Again, the general idea is to recognize when the
conditions under which ordinary sentences are true are the same as the conditions
under which formal ones are true. Surprisingly perhaps, the hardest part is on the
side of recognizing truth conditions in ordinary language. With this in mind, let us
begin with some definitions whose application is to expressions of ordinary language;
after that, we will turn to a procedure for translation, and to discussion of particular
operators.
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5.2.1 Some Definitions

In this section, we introduce a series of definitions whose application is to ordinary
language. These definitions are not meant to compete with anything you have learned
in English class. They are rather specific to our purposes. With the definitions under
our belt, we will be able to say with some precision what we want to do.

First, a declarative sentence is a sentence which has a truth value. ‘Snow is
white’ and ‘Snow is green’ are declarative sentences — the first true and the second
false. ‘Study harder!’ and ‘Why study?’ are sentences, but not declarative sentences.
Given this, a sentential operator is an expression containing “blanks” such that when
the blanks are filled with declarative sentences, the result is a declarative sentence.
In ordinary speech and writing, such blanks do not typically appear (!) however
punctuation and expression typically fill the same role. Examples are,

John believes that

John heard that

It is not the case that

and

‘John believes that snow is white’, ‘John believes that snow is green’, and ‘John
believes that dogs fly’ are all sentences — some more plausibly true than others. Still,
‘Snow is white’, ‘Snow is green’, and ‘Dogs fly’ are all declarative sentences, and
when we put them in the blank of ‘John believes that ’ the result is a declarative
sentence, where the same would be so for any declarative sentence in the blank; so
‘John believes that ’ is a sentential operator. Similarly, ‘Snow is white and dogs
fly’ is a declarative sentence — a false one, since dogs do not fly. And, so long as
we put declarative sentences in the blanks of ‘ and ’ the result is always a
declarative sentence. So ‘ and ’ is a sentential operator. In contrast,

When

is white

are not sentential operators. Though ‘Snow is white’ is a declarative sentence, ‘When
snow is white’ is an adverbial clause, not a declarative sentence. And, though ‘Dogs
fly’ and ‘Snow is green’ are declarative sentences, ‘Dogs fly is white snow is green’ is
ungrammatical nonsense. If you can think of even one case where putting declarative
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sentences in the blanks of an expression does not result in a declarative sentence, then
the expression is not a sentential operator. So these are not sentential operators.

Now, as in these examples, we can think of some declarative sentences as gen-
erated by the combination of sentential operators with other declarative sentences.
Declarative sentences generated from other sentences by means of sentential opera-
tors are compound; all others are simple. Thus, for example, ‘Bob likes Mary’ and
‘Socrates is wise’ are simple sentences, they do not have a declarative sentence in
the blank of any operator. In contrast, ‘John believes that Bob likes Mary’ and ‘Jim
heard that John believes that Bob likes Mary’ are compound. The first has a simple
sentence in the blank of ‘John believes that ’. The second puts a compound in
the blank of ‘Jim heard that ’.

For cases like these, the main operator of a compound sentence is that operator
not in the blank of any other operator. The main operator of ‘John believes that Bob
likes Mary’ is ‘John believes that ’. And the main operator of ‘Jim heard that
John believes that Bob likes Mary’ is ‘Jim heard that ’. The main operator of ‘It
is not the case that Bob likes Sue and it is not the case that Sue likes Bob’ is ‘
and ’, for that is the operator not in the blank of any other. Notice that the main
operator of a sentence need not be the first operator in the sentence. Observe also that
operator structure may not be obvious. Thus, for example, ‘Jim heard that Bob likes
Sue and Sue likes Jim’ is capable of different interpretations. It might be, ‘Jim heard
that Bob likes Sue and Sue likes Jim’ with main operator, ‘Jim heard that ’ and
the compound, ‘Bob likes Sue and Sue likes Jim’ in its blank. But it might be ‘Jim
heard that Bob likes Sue and Sue likes Jim’ with main operator, ‘ and ’. The
question is what Jim heard, and what the ‘and’ joins. As suggested above, punctuation
and expression often serve in ordinary language to disambiguate confusing cases.
These questions of interpretation are not peculiar to our purposes! Rather they are
the ordinary questions that might be asked about what one is saying. The underline
structure serves to disambiguate claims, to make it very clear how the operators apply.

When faced with a compound sentence, the best approach is start with the whole,
rather than the parts. So begin with blank(s) for the main operator. Thus, as we have
seen, the main operator of ‘It is not the case that Bob likes Sue, and it is not the case
that Sue likes Bob’ is ‘ and ’. So begin with lines for that operator, ‘It is not
the case that Bob likes Sue and it is not the case that Sue likes Bob’ (leaving space
for lines above). Now focus on the sentence in one of the blanks, say the left; that
sentence, ‘It is not the case that Bob likes Sue’ is is a compound with main operator,
‘it is not the case that ’. So add the underline for that operator, ‘It is not the case
that Bob likes Sue and it is not the case that Sue likes Bob’. The sentence in the blank
of ‘it is not the case that ’ is simple. So turn to the sentence in the right blank of
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the main operator. That sentence has main operator ‘it is not the case that ’. So
add an underline. In this way we end up with, ‘It is not the case that Bob likes Sue
and it is not the case that Sue likes Bob’ where, again, the sentence in the last blank
is simple. Thus, a complex problem is reduced to ones that are progressively more
simple. Perhaps this problem was obvious from the start. But this approach will serve
you well as problems get more complex!

We come finally to the key notion of a truth functional operator. A sentential
operator is truth functional iff any compound generated by it has its truth value wholly
determined by the truth values of the sentences in its blanks. We will say that the truth
value of a compound is “determined” by the truth values of sentences in blanks just in
case there is no way to switch the truth value of the whole while keeping truth values
of sentences in the blanks constant. This leads to a test for truth functionality: We
show that an operator is not truth functional, if we come up with some situation(s)
where truth values of sentences in the blanks are the same, but the truth value of the
resulting compounds are not. To take a simple case, consider ‘John believes that

’. If things are pretty much as in the actual world, ‘Dogs fly’ and ‘There is a
Santa’ are both false. But if John is a small child it may be that,

(B)
Dogs fly

John believes that There is a Santa
F /T F

the compound is false with one in the blank, and true with the other. Thus the truth
value of the compound is not wholly determined by the truth value of the sentence in
the blank. We have found a situation where sentences with the same truth value in the
blank result in a different truth value for the whole. Thus ‘John believes that ’ is
not truth functional. We might make the same point with a pair of sentences that are
true, say ‘Dogs bark’ and ‘There are infinitely many prime numbers’ (be clear in your
mind about how this works).

As a second example, consider, ‘ because ’. Suppose ‘You are happy’,
‘You got a good grade’, ‘There are fish in the sea’ and ‘You woke up this morning’ are
all true.

(C)
You are happy You got a good grade

There are fish in the sea because You work up this morning
T T /F T

Still, it is natural to think that, the truth value of the compound, ‘You are happy
because you got a good grade’ is true, but ‘There are fish in the sea because you woke
up this morning’ is false. For perhaps getting a good grade makes you happy, but the
fish in the sea have nothing to do with your waking up. Thus there are consistent
situations or stories where sentences in the blanks have the same truth values, but
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the compounds do not. Thus, by the definition, ‘ because ’ is not a truth
functional operator. To show that an operator is not truth functional it is sufficient to
produce some situation of this sort: where truth values for sentences in the blanks
match, but truth values for the compounds do not. Observe that sentences in the blanks
are fixed but the value of the compound is not. Thus, it would be enough to find, say,
a case where sentences in the first blank are T, sentences in the second are F but the
value of the whole flips from T to F. To show that an operator is not truth functional,
any matching combination that makes the whole switch value will do.

To show that an operator is truth functional, we need to show that no such cases
are possible. For this, we show how the truth value of what is in the blank determines
the truth value of the whole. As an example, consider first,

(D)
It is not the case that

F T
T F

In this table, we represent the truth value of whatever is in the blank by the column
under the blank, and the truth value for the whole by the column under the operator.
If we put something true according to a consistent story into the blank, the resultant
compound is sure to be false according to that story. Thus, for example, in the true
story, ‘Snow is white’, ‘2 2 D 4’ and ‘Dogs bark’ are all true; correspondingly, ‘It
is not the case that snow is white’, ‘It is not the case that 2 2 D 4’ and ‘It is not
the case that dogs bark’ are all false. Similarly, if we put something false according
to a story into the blank, the resultant compound is sure to be true according to the
story. Thus, for example, in the true story, ‘Snow is green’ and ‘2 2 D 3’ are both
false. Correspondingly, ‘It is not the case that snow is green’ and ‘It is not the case
that 2 2 D 3’ are both true. It is no coincidence that the above table for ‘It is not the
case that ’ looks like the table for �. We will return to this point shortly.

For a second example of a truth functional operator, consider ‘ and ’.
This seems to have table,

(E)

and
T T T
T F F
F F T
F F F

Consider a situation where Bob and Sue each love themselves, but hate each other.
Then Bob loves Bob and Sue loves Sue is true. But if at least one blank has a sentence
that is false, the compound is false. Thus, for example, in that situation, Bob loves
Bob and Sue loves Bob is false; Bob loves Sue and Sue loves Sue is false; and Bob
loves Sue and Sue loves Bob is false. For a compound, ‘ and ’ to be true,
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the sentences in both blanks have to be true. And if they are both true, the compound
is itself true. So the operator is truth functional. Again, it is no coincidence that the
table looks so much like the table for ^. To show that an operator is truth functional,
it is sufficient to produce the table that shows how the truth values of the compound
are fixed by the truth values of the sentences in the blanks.

Definitions for Translation

DC A declarative sentence is a sentence which has a truth value.

SO A sentential operator is an expression containing “blanks” such that when the blanks
are filled with declarative sentences, the result is a declarative sentence.

CS Declarative sentences generated from other sentences by means of sentential operators
are compound; all others are simple.

MO The main operator of a compound sentence is that operator not in the blank of any
other operator.

TF A sentential operator is truth functional iff any compound generated by it has its truth
value wholly determined by the truth values of the sentences in its blanks.

To show that an operator is not truth functional it is sufficient to produce some situa-
tion where truth values for sentences in the blanks are constant, but truth values for the
compounds are not.

To show that an operator is truth functional, it is sufficient to produce the table that shows
how the truth values of the compound are fixed by truth values of the sentences in the
blanks.

For an interesting sort of case, consider the operator ‘According to every consistent
story ’, and the following attempted table,

(F)
According to every consistent story

? T
F F

(On some accounts, this operator works like ‘Necessarily ’). Say we put some
sentence P that is false according to a consistent story into the blank. Then since
P is false according to that very story, it is not the case that P according to every
consistent story — and the compound is sure to be false. So we fill in the bottom row
under the operator as above. So far, so good. But consider ‘Dogs bark’ and ‘2 2 D 4’.
Both are true according to the true story. But only the second is true according to
every consistent story. So the compound is false with the first in the blank, true with
the second. So ‘According to every consistent story ’ is therefore not a truth



CHAPTER 5. TRANSLATION 89

functional operator. The truth value of the compound is not wholly determined by
the truth value of the sentence in the blank. Similarly, it is natural to think that ‘
because ’ is false whenever one of the sentences in its blanks is false. It cannot
be true that P because Q if not-P , and it cannot be true that P because Q if not-Q.
If you are not happy, then it cannot be that you are happy because you understand the
material; and if you do not understand the material, it cannot be that you are happy
because you understand the material. So far, then, the table for ‘ because ’
is like the table for ‘ and ’.

(G)

because
T ? T
T F F
F F T
F F F

However, as we saw just above, in contrast to ‘ and ’, compounds generated
by ‘ because ’ may or may not be true when sentences in the blanks are both
true. So, although ‘ and ’ is truth functional, ‘ because ’ is not.

Thus the question is whether we can complete a table of the above sort: If there
is a way to complete the table, the operator is truth functional. The test to show an
operator is not truth functional simply finds some case to show that such a table cannot
be completed.

E5.1. For each of the following, identify the simple sentences that are parts. If the
sentence is compound, use underlines to exhibit its operator structure, and say
what is its main operator.

a. Bob likes Mary.

b. Jim believes that Bob likes Mary.

c. It is not the case that Bob likes Mary.

d. Jane heard that it is not the case that Bob likes Mary.

e. Jane heard that Jim believes that it is not the case that Bob likes Mary.

f. Voldemort is very powerful, but it is not the case that Voldemort kills Harry at
birth.

g. Harry likes his godfather and Harry likes Dumbledore, but it is not the case
that Harry likes his uncle.
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*h. Hermoine believes that studying is good, and Hermione studies hard, but Ron
believes studying is good, and it is not the case that Ron studies hard.

i. Malfoy believes mudbloods are scum, but it is not the case that mudbloods are
scum; and Malfoy is a dork.

j. Harry believes that Voldemort is evil and Hermione believes that Voldemort is
evil, but it is not the case that Bellatrix believes that Voldemort is evil.

E5.2. Which of the following operators are truth functional and which are not? If the
operator is truth functional, display the relevant table; if it is not, give cases
that flip the value of the compound, with the value in the blanks constant.

*a. It is a fact that

b. Elmore believes that

*c. but

d. According to some consistent story

e. Although ,

*f. It is always the case that

g. Sometimes it is the case that

h. therefore

i. however

j. Either or (or both)

5.2.2 Parse Trees

We are now ready to outline a procedure for translation into our formal sentential
language. In the end, you will often be able to see how translations should go and to
write them down without going through all the official steps. However, the procedure
should get you thinking in the right direction, and remain useful for complex cases.
To translate some ordinary sentences P1 : : : Pn the basic translation procedure is,

TP (1) Convert the ordinary P1 : : : Pn into corresponding ordinary equivalents
exposing truth functional and operator structure.
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(2) Generate a “parse tree” for each of P1 : : : Pn and specify the interpretation
function II by assigning sentence letters to sentences at the bottom nodes.

(3) Using sentence letters from II and equivalent formal operators, construct
a parallel tree that translates each node from the parse tree, to generate a
formal P 0

i
for each Pi .

For now at least, the idea behind step (1) is simple: Sometimes all you need to do is
expose operator structure by introducing underlines. In complex cases, this can be
difficult! But we know how to do this. Sometimes, however, truth functional structure
does not lie on the surface. Ordinary sentences are equivalent when they are true
and false in exactly the same consistent stories. And we want ordinary equivalents
exposing truth functional structure. Suppose P is a sentence of the sort,

(H) Bob is not happy

Is this a truth functional compound? Not officially. There is no declarative sentence in
the blank of a sentential operator; so it is not compound; so it is not a truth functional
compound. But one might think that (H) is short for,

(I) It is not the case that Bob is happy

which is a truth functional compound. At least, (H) and (I) are equivalent in the sense
that they are true and false in the same consistent stories. Similarly, ‘Bob and Carol
are happy’ is not a compound of the sort we have described, because ‘Bob’ is not a
declarative sentence. However, it is a short step from this sentence to the equivalent,
‘Bob is happy and Carol is happy’ which is an official truth functional compound. As
we shall see, in some cases, this step can be more complex. But let us leave it at that
for now.

Moving to step (2), in a parse tree we begin with sentences constructed as in step
(1). If a sentence has a truth functional main operator, then it branches downward for
the sentence(s) in its blanks. If these have truth functional main operators, they branch
for the sentences in their blanks; and so forth, until sentences are simple or have
non-truth functional main operators. Then we construct the interpretation function II
by assigning a distinct sentence letter to each distinct sentence at a bottom node from
a tree for the original P1 : : : Pn.

Some simple examples should make this clear. Say we want to translate a collec-
tion of four sentences.

1. Bob is happy

2. Carol is not happy



CHAPTER 5. TRANSLATION 92

3. Bob is healthy and Carol is not

4. Bob is happy and John believes that Carol is not healthy

The first is a simple sentence. Thus there is nothing to be done at step (1). And since
there is no main operator, there is no branching and the sentence itself is a completed
parse tree. The tree is just,

(J) Bob is happy

Insofar as the simple sentence is a complete branch of the tree, it counts as a bottom
node of its tree. It is not yet assigned a sentence letter, so we assign it one. B1: Bob is
happy. We select this letter to remind us of the assignment.

The second sentence is not a truth functional compound. Thus in the first stage,
‘Carol is not happy’ is expanded to the equivalent, ‘It is not the case that Carol is
happy’. In this case, there is a main operator; since it is truth functional, the tree has
some structure.

(K)

It is not the case that Carol is happy

Carol is happy

The bottom node is simple, so the tree ends. ‘Carol is happy’ is not assigned a letter;
so we assign it one. C1: Carol is happy.

The third sentence is equivalent to, Bob is healthy and it is not the case that Carol
is healthy. Again, the operators are truth functional, and the result is a structured tree.

(L)

Bob is healthy and it is not the case that Carol is healthy
��������

HHHH
Bob is healthy it is not the case that Carol is healthy

Carol is healthy

The main operator is truth functional. So there is a branch for each of the sentences in
its blanks. Observe that underlines continue to reflect the structure of these sentences
(so we “lift” the sentences from their blanks with structure intact). On the left, ‘Bob
is healthy’ has no main operator, so it does not branch. On the right, ‘it is not the
case that Carol is healthy’ has a truth functional main operator, and so branches. At
bottom, we end up with ‘Bob is healthy’ and ‘Carol is healthy’. Neither has a letter,
so we assign them ones. B2: Bob is healthy; C2: Carol is healthy.
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The final sentence is equivalent to, Bob is happy and John believes it is not the
case that Carol is healthy. It has a truth functional main operator. So there is a
structured tree.

(M)

Bob is happy and John believes it is not the case that Carol is healthy
((((((((((((

HH
HH

Bob is happy John believes it is not the case that Carol is healthy

On the left, ‘Bob is happy’ is simple. On the right, ‘John believes it is not the case
that Carol is healthy’ is complex. But its main operator is not truth functional. So it
does not branch. We only branch for sentences in the blanks of truth functional main
operators. Given this, we proceed in the usual way. ‘Bob is happy’ already has a letter.
The other does not; so we give it one. J : John believes it is not the case that Carol is
healthy.

And that is all. We have now compiled an interpretation function,

II B1: Bob is happy

C1: Carol is happy

B2: Bob is healthy

C2: Carol is healthy

J : John believes it is not the case that Carol is healthy

Of course, we might have chosen different letters. All that matters is that we have a
distinct letter for each distinct sentence. Our intended interpretations are ones that
capture available sentential structure, and make the sentence letters true in situations
where these sentences are true and false when they are not. In the last case, there is
a compulsion to think that we can somehow get down to the simple sentence ‘Carol
is happy’. But resist temptation! A non-truth functional operator “seals off” that
upon which it operates, and forces us to treat the compound as a unit. We do not
automatically assign sentence letters to simple sentences, but rather to parts that are
not truth functional compounds. Simple sentences fit this description. But so do
compounds with non-truth-functional main operators.

E5.3. Use our method to expose truth functional structure and produce parse trees
for each of the following. Use your trees to produce an interpretation function
for the sentences. Hint: pay attention to punctuation as a guide to structure.

a. Bingo is spotted, and Spot can play bingo.
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b. Bingo is not spotted, and Spot cannot play bingo.

c. Bingo is spotted, and believes that Spot cannot play bingo.

*d. It is not the case that: Bingo is spotted and Spot can play bingo.

e. It is not the case that: Bingo is not spotted and Spot cannot play bingo.

E5.4. Use our method to expose truth functional structure and produce parse trees
for each of the following. Use your trees to produce an interpretation function
for the sentences.

*a. People have rights and dogs have rights, but rocks do not.

b. It is not the case that: rocks have rights, but people do not.

c. Aliens believe that rocks have rights, but it is not the case that people believe
it.

d. Aliens landed in Roswell NM in 1947, and live underground but not in my
backyard.

e. Rocks do not have rights and aliens do not have rights, but people and dogs
do.

5.2.3 Formal Sentences

Now we are ready for step (3) of the translation procedure TP. Our aim is to generate
translations by constructing a parallel tree where the force of ordinary truth functional
operators is captured by equivalent formal operators. An ordinary truth functional
operator has a table. Similarly, our formal expressions have tables. Say an ordinary
truth functional operator is equivalent to some formal expression containing blanks
just in case their tables are the same. Thus ‘� ’ is equivalent to ‘it is not the case
that ’. They are equivalent insofar as in each case, the whole has the opposite
truth value of what is in the blank. Similarly, ‘ ^ ’ is equivalent to ‘
and ’. In either case, when sentences in the blanks are both T the whole is T, and
in other cases, the whole is F. Of course, the complex ‘�. ! � /’ takes the
same values as the ‘ ^ ’ that abbreviates it. So different formal expressions
may be equivalent to a given ordinary one.

To see how this works, let us return to the sample sentences from above. Again,
the idea is to generate a parallel tree. We begin by using the sentence letters from our



CHAPTER 5. TRANSLATION 95

interpretation function for the bottom nodes. The case is particularly simple when the
tree has no structure. ‘Bob is happy’ had a simple unstructured tree, and we assigned
it a sentence letter directly. Thus our original and parallel trees are,

(N) Bob is happy B1

So for a simple sentence, we simply read off the final translation from the interpretation
function. So much for the first sentence.

As we have seen, the second sentence is equivalent to ‘It is not the case that Carol
is happy’ with a parse tree as on the left below. We begin the parallel tree on the other
side.

(O)

It is not the case that Carol is happy

Carol is happy C1

We know how to translate the bottom node. But now we want to capture the force
of the truth functional operator with some equivalent formal operator(s). For this,
we need a formal expression containing blanks whose table mirrors the table for the
sentential operator in question. In this case, ‘� ’ works fine. That is, we have,

�

F T
T F

It is not the case that
F T
T F

In each case, when the expression in the blank is T, the whole is F, and when the
expression in the blank is F, the whole is T. So ‘� ’ is sufficient as a translation
of ‘It is not the case that ’. Other formal expressions might do just as well. Thus,
for example, we might go with, ‘��� ’. The table for this is the same as the
table for ‘� ’. But it is hard to see why we would do this, with � so close at hand.
Now the idea is to apply the equivalent operator to the already translated expression
from the blank. But this is easy to do. Thus we complete the parallel tree as follows.

It is not the case that Carol is happy

Carol is happy

�C1

C1

The result is the completed translation, �C1.
The third sentence has a parse tree as on the left, and resultant parallel tree as on

the right. As usual, we begin with sentence letters from the interpretation function for
the bottom nodes.
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(P)

Bob is healthy and it is not the case that Carol is healthy
��������

HHHH
Bob is healthy it is not the case that Carol is healthy

Carol is healthy

.B2 ^�C2/

�
�
@
@

B2 �C2

C2

Given translations for the bottom nodes, we work our way through the tree, applying
equivalent operators to translations already obtained. As we have seen, a natural
translation of ‘it is not the case that ’ is ‘� ’. Thus, working up from ‘Carol
is healthy’, our parallel to ‘it is not the case that Carol is healthy’ is �C2. But
now we have translations for both of the blanks of ‘ and ’. As we have
seen, this has the same table as ‘. ^ /’. So that is our translation. Again,
other expressions might do. In particular, ^ is an abbreviation with the same table
as ‘�. ! � /’. In each case, the whole is true when the sentences in
both blanks are true, and otherwise false. Since this is the same as for ‘ and

’, either would do as a translation. But again, the simplest thing is to go with
‘. ^ /’. Thus the final result is .B2 ^�C2/. With the alternate translation
for the main operator, the result would have been �.B2 ! ��C2/. Observe that the
parallel tree is an upside-down version of the (by now quite familiar) tree by which
we would show that the expression is a sentence.

Our last sentence is equivalent to, Bob is happy and John believes it is not the
case that Carol is healthy. Given what we have done, the parallel tree should be easy
to construct.

(Q)

Bob is happy and John believes it is not the case that Carol is healthy
((((((((((((

H
HHH

Bob is happy John believes it is not the case that Carol is healthy

.B1 ^ J /

�
�
@
@

JB1

Given that the tree “bottoms out” on both ‘Bob is happy’ and ‘John believes it is not
the case that Carol is healthy’ the only operator to translate is the main operator ‘
and ’. And we have just seen how to deal with that. The result is the completed
translation, .B1 ^ J /.

Again, once you become familiar with this procedure, the full method, with the
trees, may become tedious — and we will often want to set it to the side. But notice:
the method breeds good habits! And the method puts us in a position to translate
complex expressions, even ones that are so complex that we can barely grasp what
they are saying. Beginning with the main operator, we break expressions down from
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complex parts to ones that are simpler. Then we construct translations, one operator
at a time, where each step is manageable. Also, we should be able to see why the
method results in good translations: For any situation and corresponding intended
interpretation, truth values for basic parts are the same by the specification of the
interpretation function. And given that operators are equivalent, truth values for parts
built out of them must be the same as well, all the way up to the truth value of the
whole. We satisfy the first part of our criterion CG insofar as the way we break down
sentences in parse trees forces us to capture all the truth functional structure there is
to be captured.

For a last example, consider, ‘Bob is happy and Bob is healthy and Carol is happy
and Carol is healthy’. This is true only if ‘Bob is happy’, ‘Bob is healthy’, ‘Carol
is happy’, and ‘Carol is healthy’ are all true. But the method may apply in different
ways. We might at step one, treat the sentence as a complex expression involving
multiple uses of ‘ and ’; perhaps something like,

(R) Bob is happy and Bob is healthy and Carol is happy and Carol is healthy

In this case, there is a straightforward move from the ordinary operators to formal
ones in the final step. That is, the situation is as follows.

Bob is happy and Bob is healthy and Carol is happy and Carol is healthy
!!!!!

PPPPPPP
Bob is happy and Bob is healthy Carol is happy and Carol is healthy

�
�
@
@

�
�
@
@

Bob is happy Bob is healthy Carol is happy Carol is healthy

..B1 ^ B2/ ^ .C1 ^ C2//

�
�
�

Q
Q
Q

.B1 ^ B2/ .C1 ^ C2/

�
�
A
A

�
�
A
A

B1 B2 C1 C2

So we use multiple applications of our standard caret operator. But we might have
treated the sentence as something like,

(S) Bob is happy and Bob is healthy and Carol is happy and Carol is healthy

involving a single four-blank operator, ‘ and and and ’, which
yields true only when sentences in all its blanks are true. We have not seen anything
like this before, but nothing stops a tree with four branches all at once. In this case,
we would begin,

Bob is happy and Bob is healthy and Carol is happy and Carol is healthy

�
�
�

Q
Q
Q

���������

XXXXXXXXX
Bob is happy Bob is healthy Carol is happy Carol is healthy B1 B2 C1 C2
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But now, for an equivalent operator we need a formal expression with four blanks that
is true when sentences in all the blanks are true and otherwise false. Here is something
that would do: ‘.. ^ / ^ . ^ //’. On either of these approaches,
then, the result is ..B1 ^ B2/ ^ .C1 ^ C2//. Other options might result in something
like ...B1 ^ B2/ ^ C1/ ^ C2/. In this way, there is room for shifting burden between
steps one and three. Such shifting explains how step (1) can be more complex than it
was initially represented to be. Choices about expanding truth functional structure
in the initial stage may matter for what are the equivalent operators at the end. And
the case exhibits how there are options for different, equally good, translations of the
same ordinary expressions. What matters for CG is that resultant expressions capture
available structure and be true when the originals are true and false when the originals
are false. In most cases, one translation will be more natural than others, and it is
good form to strive for natural translations. If there had been a comma so that the
original sentence was, ‘Bob is happy and Bob is healthy, and Carol is happy and Carol
is healthy’ it would have been most natural to go for an account along the lines of (R).
And it is crazy to use, say, ‘��� ’ when ‘� ’ will do as well.

*E5.5. Construct parallel trees to complete the translation of the sentences from E5.3
and E5.4. Hint: you will not need any operators other than � and ^.

E5.6. Use our method to translate each of the following. That is, generate parse trees
with an interpretation function for all the sentences, and then parallel trees to
produce formal equivalents.

a. Plato and Aristotle were great philosophers, but Ayn Rand was not.

b. Plato was a great philosopher, and everything Plato said was true, but Ayn
Rand was not a great philosopher, and not everything she said was true.

*c. It is not the case that: everything Plato, and Aristotle, and Ayn Rand said was
true.

d. Plato was a great philosopher but not everything he said was true, and Aristotle
was a great philosopher but not everything he said was true.

e. Not everyone agrees that Ayn Rand was not a great philosopher, and not
everyone thinks that not everything she said was true.



CHAPTER 5. TRANSLATION 99

E5.7. Use our method to translate each of the following. That is, generate parse trees
with an interpretation function for all the sentences, and then parallel trees to
produce formal equivalents.

a. Bob and Sue and Jim will pass the class.

b. Sue will pass the class, but it is not the case that: Bob will pass and Jim will
pass.

c. It is not the case that: Bob will pass the class and Sue will not.

d. Jim will not pass the class, but it is not the case that: Bob will not pass and
Sue will not pass.

e. It is not the case that: Jim will pass and not pass, and it is not the case that:
Sue will pass and not pass.

5.2.4 And, Or, Not

Our idea has been to recognize when truth conditions for ordinary and formal sentences
are the same. As we have seen, this turns out to require recognizing when operators
have the same tables. We have had a lot to say about ‘it is not the case that ’
and ‘ and ’. We now turn to a more general treatment. We will not be able
to provide a complete menu of ordinary operators. Rather, we will see that some
uses of some ordinary operators can be appropriately translated by our symbols. We
should be able to discuss enough cases for you to see how to approach others on a
case-by-case basis. The discussion is organized around our operators, �, ^, _,!
and$, taken in that order.

First, as we have seen, ‘It is not the case that ’ has the same table as �. And
various ordinary expressions may be equivalent to expressions involving this operator.
Thus, ‘Bob is not married’ and ‘Bob is unmarried’ might be understood as equivalent
to ‘It is not the case that Bob is married’. Given this, we might assign a sentence letter,
say, M to ‘Bob is married’ and translate �M . But the second case calls for comment.
By comparison, consider, ‘Bob is unlucky’. Given what we have done, it is natural to
treat ‘Bob is unlucky’ as equivalent to ‘It is not the case that Bob is lucky’; assign L

to ‘Bob is lucky’; and translate �L. But this is not obviously right. Consider three
situations: (i) Bob goes to Las Vegas with $1,000, and comes away with $1,000,000.
(ii) Bob goes to Las Vegas with $1,000, and comes away with $100, having seen
a show and had a good time. (iii) Bob goes to Las Vegas with $1,000, falls into a
manhole on his way into the casino, and has his money stolen by a light-fingered thief
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on the way down. In the first case he is lucky; in the third, unlucky. But, in the second,
one might want to say that he was neither lucky nor unlucky.

(i) Bob is lucky
(ii) Bob is neither lucky nor unlucky
(iii) Bob is unlucky

�
It is not the case that Bob is lucky

If this is right, ‘Bob is unlucky’ is not equivalent to ‘It is not the case that Bob is lucky’
— for it is not the case that Bob is lucky in both situations (ii) and (iii). Thus we might
have to assign ‘Bob is lucky’ one letter, and ‘Bob is unlucky’ another.1 Decisions
about this sort of thing may depend heavily on context, and assumptions which are in
the background of conversation. We will ordinarily assume contexts where there is no
“neutral” state — so that being unlucky is not being lucky, and similarly in other cases.

Second, as we have seen, ‘ and ’ has the same table as ^. As you may
recall from E5.2, another common operator that works this way is ‘ but ’.
Consider, for example, ‘Bob likes Mary but Mary likes Jim’. Suppose Bob does like
Mary and Mary likes Jim; then the compound sentence is true. Suppose one of the
simples is false, Bob does not like Mary or Mary does not like Jim; then the compound
is false. Thus ‘ but ’ has the table,

(T)

but
T T T
T F F
F F T
F F F

and so has the same table as ^. So, in this case, we might assign B to ‘Bob likes Mary’
M to ‘Mary likes Jim’, and translate, .B ^M/. Of course, the ordinary expression
‘but’ carries a sense of opposition that ‘and’ does not. Our point is not that ‘and’
and ‘but’ somehow mean the same, but rather that compounds formed by means of
them are true and false under the same truth functional conditions. Another common
operator with this table is ‘Although , ’. You should convince yourself that
this is so, and be able to find other ordinary terms that work just the same way.

Once again, however, there is room for caution in some cases. Consider, for
example, ‘Bob took a shower and got dressed’. Given what we have done, it is natural
to treat this as equivalent to ‘Bob took a shower and Bob got dressed’; assign letters
S and D; and translate .S ^D/. But this is not obviously right. Suppose Bob gets

1Or so we have to do in the context of our logic where T and F are the only truth values. Another
option is to allow three values so that the one letter might be T, F or neither. It is possible to proceed on
this basis — though the two valued (classical) approach has the virtue of relative simplicity! With the
classical approach as background, some such alternatives are developed in Priest, Non-Classical Logics.
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dressed, but then realizes that he is late for a date and forgot to shower, so he jumps
in the shower fully clothed, and air-dries on the way. Then it is true that Bob took a
shower, and true that Bob got dressed. But is it true that Bob took a shower and got
dressed? If not — because the order is wrong — our translation .S ^D/ might be
true when the original sentence is not. Again, decisions about this sort of thing depend
heavily upon context and background assumptions. And there may be a distinction
between what is said and what is conversationally implied in a given context. Perhaps
what was said corresponds to the table, so that our translation is right, though there are
certain assumptions typically made in conversation that go beyond. But we need not
get into this. Our point is not that the ordinary ‘and’ always works like our operator
^; rather the point is that some (indeed, many) ordinary uses are rightly regarded as
having the same table.2 Again, we will ordinarily assume a context where ‘and’, ‘but’
and the like have tables that correspond to ^.

The operator which is most naturally associated with _ is ‘ or ’. In this
case, there is room for caution from the start. Consider first a restaurant menu which
says that you will get soup, or you will get salad, with your dinner. This is naturally
understood as ‘you will get soup or you will get salad’ where the sentential operator
is ‘ or ’. In this case, the table would seem to be,

(U)

or
T F T
T T F
F T T
F F F

The compound is true if you get soup, true if you get salad, but not if you get neither
or both. None of our operators has this table.

But contrast this case with one where a professor promises either to give you an
‘A’ on a paper, or to give you very good comments so that you will know what went
wrong. Suppose the professor gets excited about your paper, giving you both an ‘A’

2The ability to make this point is an important byproduct of our having introduced the formal
operators “as themselves.” Where ^ and the like are introduced as being direct translations of ordinary
operators, a natural reaction to cases of this sort — a reaction had even by some professional logicians
and philosophers — is that “the table is wrong.” But this is mistaken! ^ has its own significance, which
may or may not agree with the shifting meaning of ordinary terms. The situation is no different than for
translation across ordinary languages, where terms may or may not have uniform equivalents.

But now, one may feel a certain tension with our account of what it is for an operator to be truth
functional — for there seem to be contexts where the truth value of sentences in the blanks does not
determine the truth value of the whole, even for a purportedly truth functional operator like ‘ and

’. However, we want to distinguish different senses in which an operator may be used (or an
ambiguity, as between a bank of a river, and a bank where you deposit money), so that when an operator
is used with just one sense it has some definite truth function.
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and comments. Presumably, she did not break her promise! That is, in this case, we
seem to have, ‘I will give you an ‘A’ or I will give you comments’ with the table,

(V)

or
T T T
T T F
F T T
F F F

The professor breaks her word just in case she gives you a low grade without comments.
This table is identical to the table for _. For another case, suppose you set out to buy
a power saw, and say to your friend ‘I will go to Home Depot or I will go Lowes’.
You go to Home Depot, do not find what you want, so go to Lowes and make your
purchase. When your friend later asks where you went, and you say you went to both,
he or she will not say you lied (!) when you said where you were going — for your
statement required only that you would try at least one of those places.

The grading and shopping cases represent the so-called “inclusive” use of ‘or’ —
including the case when both components are T; the menu uses the “exclusive” use
of ‘or’ — excluding the case when both are T. Ordinarily, we will assume that ‘or’ is
used in its inclusive sense, and so is translated directly by _.3 Another operator that
works this way is ‘ unless ’. Again, there are exclusive and inclusive senses
— which you should be able to see by considering restaurant and grade examples as
above. And again, we will ordinarily assume that the inclusive sense is intended. For
the exclusive cases, we can generate the table by means of complex expressions. Thus,
for example both .P $ �Q/ and Œ.P _ Q/ ^ �.P ^ Q/� do the job. You should
convince yourself that this is so.

Observe that ‘either or ’ has the same table as ‘ or ’; and
‘both and ’ the same as ‘ and ’. So one might think that ‘either’
and ‘both’ have no real role. They do however serve a sort of “bracketing” function:
Consider ‘neither Bob likes Sue nor Sue likes Bob’. This is most naturally understood
as, ‘it is not the case that either Bob likes Sue or Sue likes Bob’ with translation
�.B _ S/. Observe that this division is required: An attempt to parse it to ‘it is not
the case that either Bob likes Sue or Sue like Bob’ results in the fragment ‘either Bob
likes Sue’ in the blank for ‘it is not the case that ’. There would be an ambiguity
about the main operator if ‘either’ were missing; but with it there, the only way to
keep complete sentences in the blanks is to make ‘it is not the case that ’ the

3Again, there may be a distinction between what is said and what is conversationally implied in a
given context. Perhaps what was said generally corresponds to the inclusive table, though many uses are
against background assumptions which automatically exclude the case when both are T. But we need
not get into this. It is enough that some uses are according to the inclusive table.
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main operator. Similarly, ‘not both Bob likes Sue and Sue likes Bob’ comes to ‘it is
not the case that both Bob likes Sue and Sue likes Bob’ with translation �.B ^ S/. It
is possible to make these points directly. Thus, for example, ‘neither nor ’
has the following table,

(W)

Neither nor
F T T
F T F
F F T
T F F

(X)

P Q � .P _ Q/

T T F T T F
T F F T T T
F T F F T F
F F T F F T

From (W) ‘neither Bob likes Sue nor Sue likes Bob’ is true just when ‘Bob likes Sue’
and ‘Sue likes Bob’ are both false, and otherwise false. No operator of our formal
language has a table which is T just when components are both F. Still, we may
form complex expressions which work this way. So from (X), �.P _ Q/ has the
same table. Another expression that works this way is �P ^ �Q. Either would be
a good translation, though one might be more natural than the other. Similarly both
�.P ^Q/ and �P _�Q are a good translation for ‘not both and ’.

And we continue to work with complex forms on trees. Thus, for example,
consider ‘Neither Bob likes Sue nor Sue likes Bob, but Sue likes Jim unless Jim likes
Mary’. This is a mouthful, but we can deal with it in the usual way. The hard part,
perhaps, is just exposing the operator structure.

(Y)

It is not the case that either Bob likes Sue or Sue likes Bob but Sue likes Jim unless Jim likes Mary

��������

``````````
It is not the case that either Bob likes Sue or Sue likes Bob Sue likes Jim unless Jim likes Mary

��
��

HH
HH

either Bob likes Sue or Sue likes Bob

��
��

HH
HH

Sue likes Jim Jim likes Mary

Bob likes Sue Sue likes Bob

Given this, with what we have said above, generate the interpretation function and
then the parallel tree as follows.



CHAPTER 5. TRANSLATION 104

B: Bob likes Sue

S : Sue likes Bob

J : Sue likes Jim

M : Jim likes Mary

�.B _ S/ ^ .J _M/

��
��

HH
HH

�.B _ S/ .J _M/

�
�
@
@

B _ S

�
�
@
@

J M

B S

We have seen that ‘ _ ’ is equivalent to ‘ unless ’; and that ‘neither
nor ’ works like ‘it is not the case that or ’. Given these, every-

thing works as before. Again, the complex problem is rendered simple, if we attack it
one operator at a time. Another option is .�B ^�S/ ^ .J _M/ with the alternate
version of ‘neither nor ’.

E5.8. Using the interpretation function below, produce parse trees and then parallel
ones to complete the translation for each of the following.

B: Bob likes Sue

S : Sue likes Bob

B1: Bob is cool

S1: Sue is cool

a. Bob likes Sue.

b. Sue does not like Bob.

c. Bob likes Sue and Sue likes Bob.

d. Bob likes Sue or Sue likes Bob.

e. Bob likes Sue unless she is not cool.

f. Either Bob does not like Sue or Sue does not like Bob.

g. Neither Bob likes Sue, nor Sue likes Bob.

*h. Not both Bob and Sue are cool.

i. Bob and Sue are cool, and Bob likes Sue, but Sue does not like Bob.
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j. Although neither Bob nor Sue are cool, either Bob likes Sue, or Sue likes Bob.

E5.9. Use our method to translate each of the following. That is, generate parse trees
with an interpretation function for all the sentences, and then parallel trees to
produce formal equivalents.4

a. Harry is not a muggle.

b. Neither Harry nor Hermione are muggles.

c. Either Harry’s or Hermione’s parents are muggles.

*d. Neither Harry, nor Ron, nor Hermione are muggles.

e. Not both Harry and Hermione have muggle parents.

f. The game of Quidditch continues unless the Snitch is caught.

*g. Although blatching and blagging are illegal in Quidditch, the woolongong
shimmy is not.

h. Either the beater hits the bludger or you are not protected from it, and the
bludger is a very heavy ball.

i. The Chudley Cannons are not the best Quidditch team ever, however they
hope for the best.

j. Harry won the Quidditch cup in his 3rd year at Hogwarts, but not in his 1st,
2nd, 4th, or 5th.

5.2.5 If, Iff

The operator which is most naturally associated with ! is ‘if then ’.
Consider some fellow, perhaps of less than sterling character, of whom we assert, ‘If
he loves her, then she is rich’. In this case, the table begins,

(Z)

If then
T T T
T F F
F ? T
F T F

4My source for the information on Quidditch is Kennilworthy Whisp (aka, J.K. Rowling), Quidditch
Through the Ages, along with a daughter who is a rabid fan of all things Potter.



CHAPTER 5. TRANSLATION 106

If ‘He loves her’ and ‘She is rich’ are both true, then what we said about him is true.
If he loves her, but she is not rich, what we said was wrong. If he does not love her,
and she is poor, then we are also fine, for all we said was that if he loves her, then
she is rich. But what about the other case? Suppose he does not love her, but she is
rich. There is a temptation to say that our conditional assertion is false. But do not
give in! Notice: we did not say that he loves all the rich girls. All we said was that
if he loves this particular girl, then she is rich. So the existence of rich girls he does
not love does not undercut our claim. For another case, say you are trying to find the
car he is driving and say ‘If he is in his own car, then it is a Corvette.’ That is, ‘If he
is in his own car then it is a Corvette’. You would be mistaken if he has traded his
Corvette for a Yugo. But say the Corvette is in the shop and he is driving a loaner that
also happens to be a Corvette. Then ‘He is in his own car’ is F and ‘He is driving a
Corvette’ is T. Still, there is nothing wrong with your claim — if he is in his own car,
then it is a Corvette. Given this, we are left with the completed table,

(AA)

If then
T T T
T F F
F T T
F T F

which is identical to the table for!. With L for ‘He loves her’ and R for ‘She is rich’,
for ‘If he loves her then she is rich’ the natural translation is .L! R/. Another case
which works this way is He loves her only if she is rich. You should think through
this as above. So far, perhaps, so good.

But the conditional calls for special comment. First, notice that the table shifts
with the position of ‘if’. Suppose he loves her if she is rich. Intuitively, this says the
same as, ‘If she is rich then he loves her’. This time, we are mistaken if she is rich
and he does not love her. Thus, with the above table and assignments, we end up with
translation .R ! L/. Notice that the order is switched around the arrow. We can
make this point directly from the original claim.

(AB)

he loves her if she is rich
T T T
T T F
F F T
F T F

The claim is false just in the case where she is rich but he does not love her. The result
is not the same as the table for!. What we need is an expression that is F in the case
when L is F and R is T, and otherwise T. We get just this with .R! L/. Of course,
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this is just the same result as by intuitively reversing the operator into the regular ‘If
then ’ form.

In the formal language, the order of the components is crucial. In a true material
conditional, the truth of the antecedent guarantees the truth of the consequent. In
ordinary language, this role is played, not by the order of the components, but by
operator placement. In general, if by itself is an antecedent indicator; and only if is a
consequent indicator. That is, we get,

(AC)

If P then Q � .P ! Q/

P if Q � .Q! P /

P only if Q � .P ! Q/

only if P , Q � .Q! P /

‘If’, taken alone, identifies what does the guaranteeing, and so the antecedent of our
material conditional; ‘only if’ identifies what is guaranteed, and so the consequent.5

As we have just seen, the natural translation of ‘P if Q’ is Q ! P , and the
translation of ‘P only if Q’ is P ! Q. Thus it should come as no surprise that the
translation of ‘P if and only if Q’ is .P ! Q/ ^ .Q! P /, where this is precisely
what is abbreviated by .P $ Q/. We can also make this point directly. Consider, ‘he
loves her if and only if she is rich’. The operator is truth functional, with the table,

(AD)

he loves her if and only if she is rich
T T T
T F F
F F T
F T F

It cannot be that he loves her and she is not rich, because he loves her only if she is
rich; so the second row is F. And it cannot be that she is rich and he does not love her,
because he loves her if she is rich; so the third row is F. The conditional is true just
when both she is rich and he loves her, or neither. Another operator that works this
way is ‘ just in case ’. You should convince yourself that this is so. Notice
that ‘if’, ‘only if’, and ‘if and only if’ play very different roles for translation — you
almost want to think of them as completely different words: if, onlyif, and ifandonlyif,
each with their own distinctive logical role. Do not get the different roles confused!

For an example that puts some of this together, consider, ‘She is rich if he loves
her, if and only if he is a cad or very generous’. This comes to the following.

5It may feel natural to convert ‘P unless Q’ to ‘P if not Q’ and translate .�Q! P /. This is fine
and, as is clear from the abbreviated form, equivalent to .Q _P /. However, with the extra negation and
concern about direction of the arrow, it is easy to get confused on this approach — so the simple wedge
is less likely to go wrong.
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Cause and Conditional
It is important that the material conditional does not directly indicate causal con-
nection. Suppose we have sentences S : You strike the match, and L: The match
will light. And consider,

(i) If you strike the match then it will light S ! L

(ii) The match will light only if you strike it L! S

with natural translations by our method on the right. Good. But, clearly the cause
of the lighting is the striking. So the first arrow runs from cause to effect, and the
second from effect to cause. Why? In (i) we represent the cause as sufficient for the
effect: striking the match guarantees that it will light. In (ii) we represent the cause
as necessary for the effect — the only way to get the match to light, is to strike it —
so that the match’s lighting guarantees that it was struck.

There may be a certain tendency to associate the ordinary ‘if’ and ‘only if’ with
cause, so that we say, ‘if P then Q’ when we think of P as a (sufficient) cause of
Q, and say ‘P only if Q’ when we think of Q as a (necessary) cause of P . But
causal direction is not reflected by the arrow, which comes out .P ! Q/ either
way. The material conditional indicates guarantee.

This point is important insofar as certain ordinary conditionals seem inextricably
tied to causation. This is particularly the case with “subjunctive” conditionals
(conditionals about what would have been). Suppose I was playing basketball and
said, ‘If I had played Kobe, I would have won’ where this is, ‘If it were the case that
I played Kobe then it would have been the case that I won the game’. Intuitively,
this is false, Kobe would wipe the floor with me. But contrast, ‘If it were the case
that I played Lassie then it would have been the case that I won the game’. Now,
intuitively, this is true; Lassie has many talents but, presumably, basketball is not
among them — and I could take her. But I have never played Kobe or Lassie, so
both ‘I played Kobe’ and ‘I played Lassie’ are false. Thus the truth value of the
whole conditional changes from false to true though the values of sentences in the
blanks remain the same; and ‘If it were the case that then it would have been
the case that ’ is not even truth functional. Subjunctive conditionals do offer
a sort of guarantee, but the guarantee is for situations alternate to the way things
actually are. So actual truth values do not determine the truth of the conditional.

Conditionals other than the material conditional are a central theme of Priest, Non-
Classical Logics. As usual, we simply assume that ‘if’ and ‘only if’ are used in
their truth functional sense, and so are given a good translation by!.
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(AE)

She is rich if he loves her if and only if he is a cad or he is very generous
��������

XXXXXXXX
She is rich if he loves her

����

HHHH

he is a cad or he is very generous
����

HHHH

She is rich he loves her he is a cad he is very generous

We begin by assigning sentence letters to the simple sentences at the bottom. Then
the parallel tree is constructed as follows.

R: She is rich

L: He loves her

C : He is a cad

G: He is very generous

..L! R/$ .C _G//

��
��

HH
HH

.L! R/

�
�
@
@

(C _G/

�
�
@
@

R L C G

Observe that she is rich if he loves her is equivalent to .L! R/, not the other way
around. Then the wedge translates ‘ or ’, and the main operator has the
same table as$.

Notice again that our procedure for translating, one operator or part at a time, lets
us translate even where the original is so complex that it is difficult to comprehend. The
method forces us to capture all available truth functional structure, and the translation
is thus good insofar as given the specified interpretation function, the method makes
the formal sentence true at just the consistent stories where the original is true. It does
this because the formal and informal sentences work the same way. Eventually, you
want to be able to work translations without the trees! (And maybe you have already
begun to do so.) In fact, it will be helpful to generate them from the top down, rather
than from the bottom up, building the translation operator-by-operator as you take the
sentence apart from the main operator. But, of course, the result should be the same
no matter how you do it.

From definition AR on p. 5 an argument is some sentences, one of which (the
conclusion) is taken to be supported by the remaining sentences (the premises). In
some courses on logic or critical reasoning, one might spend a great deal of time
learning to identify premises and conclusions in ordinary discourse. However, we have
taken this much as given, representing arguments in standard form, with premises
listed as complete sentences above a line, and the conclusion under. Thus, for example,
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(AF)

If you strike the match, then it will light
The match will not light

You did not strike the match

is a simple argument of the sort we might have encountered in chapter 1. To translate
the argument, we produce a translation for the premises and conclusion, retaining the
“standard-form” structure. Thus as in the discussion of causation on p. 108, we might
end up with an interpretation function and translation as below,

S : You strike the match

L: The match will light

S ! L

�L

�S

The result is an object to which we can apply our semantic and derivation methods in
a straightforward way.

And this is what we have been after: If a formal argument is sententially valid,
then the corresponding ordinary argument must be logically valid. For some good
formal translation of its premises and conclusion, suppose an argument is sententially
valid; then by SV there is no interpretation on which the premises are true and the
conclusion is false; so there is no intended interpretation on which the premises are
true and the conclusion is false; but given a good translation, by CG, the ordinary-
language premises and conclusion have the same truth values at any consistent story
as formal expressions on the corresponding intended interpretation; so no consistent
story has the premises true and the conclusion false; so by LV the original argument
is logically valid. We will make this point again, in some detail, in ??. For now,
notice that our formal methods, derivations and truth tables, apply to arguments of
arbitrary complexity. So we are in a position to demonstrate validity for arguments
that would have set us on our heels in chapter 1. With this in mind, consider again the
butler case (B) that we began with from p. 2. The demonstration that the argument is
logically valid is entirely straightforward, by a good translation and then truth tables
to demonstrate semantic validity. (It remains for ?? to show how derivations matter
for semantic validity.)

E5.10. Using the interpretation function below, produce parse trees and then parallel
ones to complete the translation for each of the following.

L: Lassie barks

T : Timmy is in trouble

P : Pa will help
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H : Lassie is healthy

a. If Timmy is in trouble, then Lassie barks.

b. Timmy is in trouble if Lassie barks.

c. Lassie barks only if Timmy is in trouble.

d. If Timmy is in trouble and Lassie barks, then Pa will help.

*e. If Timmy is in trouble, then if Lassie barks Pa will help.

f. If Pa will help only if Lassie barks, then Pa will help if and only if Timmy is
in trouble.

g. Pa will help if Lassie barks, just in case Lassie barks only if Timmy is in
trouble.

h. If Timmy is in trouble and Pa does not help, then Lassie is not healthy or does
not bark.

*i. If Timmy is in trouble, then either Lassie is not healthy or if Lassie barks then
Pa will help.

j. If Lassie neither barks nor is healthy, then Timmy is in trouble if Pa will not
help.

E5.11. Use our method, with or without parse trees, to produce a translation, including
interpretation function for the following.

a. If animals feel pain, then animals have intrinsic value.

b. Animals have intrinsic value only if they feel pain.

c. Although animals feel pain, vegetarianism is not right.

d. Animals do not have intrinsic value unless vegetarianism is not right.

e. Vegetarianism is not right only if animals do not feel pain or do not have
intrinsic value.

f. If you think animals feel pain, then vegetarianism is right.
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*g. If you think animals do not feel pain, then vegetarianism is not right.

h. If animals feel pain, then if animals have intrinsic value if they feel pain, then
animals have intrinsic value.

*i. Vegetarianism is right only if both animals feel pain, and animals have intrinsic
value just in case they feel pain; but it is not the case that animals have intrinsic
value just in case they feel pain.

j. If animals do not feel pain if and only if you think animals do not feel pain,
but you do think animals feel pain, then you do not think that animals feel
pain.

E5.12. For each of the following arguments: (i) Produce a good translation, including
interpretation function and translations for the premises and conclusion. Then
(ii) use truth tables to determine whether the argument is sententially valid.

*a. Our car will not run unless it has gasoline
Our car has gasoline

Our car will run

b. If Bill is president, then Hillary is first lady
Hillary is not first lady

Bill is not president

c. Snow is white and snow is not white

Dogs can fly

d. If Mustard murdered Boddy, then it happened in the library.
The weapon was the pipe if and only if it did not happen in the library, and
the weapon was not the pipe only if Mustard murdered him

Mustard murdered Boddy

e. There is evil
If god is good, there is no evil unless he has an excuse for allowing it.
If god is omnipotent, then he does not have an excuse for allowing evil.

God is not both good and omnipotent.
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E5.13. For each of the arguments in E512 that is sententially valid, produce a deriva-
tion to show that it is valid in AD.

E5.14. Use translation and truth tables to show that the butler argument (B) from p. 2
is semantically valid.

E5.15. For each of the following concepts, explain in an essay of about two pages, so
that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii)
where the concept applies, and (iv) where it does not. Your essay should
exhibit an understanding of methods from the text.

a. Good translations.

b. Truth functional operators

c. Parse trees, interpretation functions and parallel trees

5.3 Quantificational



Chapter 6

Natural Deduction

Natural deductions systems are so-called because their rules formalize patterns of
reasoning that occur in relatively ordinary “natural” contexts. Thus, initially at least,
the rules of natural deduction systems are easier to motivate than the axioms and rules
of axiomatic systems. By itself, this is sufficient to give natural deduction a special
interest. As we shall see, natural deduction is also susceptible to proof strategies in
a way that (primitive) axiomatic systems are not. If you have had another course
in formal logic, you have probably been exposed to natural deduction. So, again, it
may seem important to bring what we have done into contact with what you have
encountered in other contexts. After some general remarks about natural deduction,
we turn to the sentential and quantificational components of our system ND, and
finally to an expanded system, ND+.

6.1 General

I begin this section with a few general remarks about derivation systems and derivation
rules. We will then turn to some background notions for the particular rules of our
official natural derivation systems.1

6.1.1 Derivations as Games

In their essential nature, derivations are defined in terms of form. Both axiomatic
and natural derivations can be seen as a kind of game — with the aim of getting
from a starting point to a goal by rules. Taken as games, there is no immediate or

1Parts of this section are reminiscent of 3.1 and, especially if you skipped over that section, you
may want to look over it now as additional background.

114
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obvious connection between derivations and semantic validity or truth. This point may
have been particularly vivid with respect to axiomatic systems. In the case of natural
derivations, the systems are driven by rules rather than axioms, and the rules may
“make sense” in a way that axioms do not. Still, we can introduce natural derivations
purely in their nature as games. Thus, for example, consider a system N1 with the
following rules.

N1
R1 P ! Q, P

Q

R2 P _Q

Q

R3 P ^Q

P

R4 P

P _Q

In this system, R1: given formulas of the form P ! Q and P , one may move to Q;
R2: given a formula of the form P _Q, one may move to Q; R3: given a formula of
the form P ^Q, one may move to P ; and R4: given a formula P one may move to
P _Q for any Q. For now, at least, the game is played as follows: One begins with
some starting formulas and a goal. The starting formulas are like “cards” in your hand.
One then applies the rules to obtain more formulas, to which the rules may be applied
again and again. You win if you eventually obtain the goal formula. Each application
of a rule is independent of the ones before — so all that matters for a given move is
whether formulas are of the requisite forms; it does not matter what was P or what
was Q in a previous application of the rules.

Let us consider some examples. At this stage, do not worry about strategy, about
why we do what we do, as much as about how the rules work and the way the game
is played. A game always begins with starting premises at the top, and goal on the
bottom.

(A)

1. A! .B ^ C / P(remise)
2. A P(remise)

B _D (goal)

The formulas on lines (1) and (2) are of the form P ! Q and P , where P maps to A

and Q to .B ^ C /; so we are in a position to apply rule R1 to get the Q.

1. A! .B ^ C / P(remise)
2. A P(remise)

3. B ^ C 1,2 R1

B _D (goal)

The justification for our move — the way the rules apply — is listed on the right; in
this case, we use the formulas on lines (1) and (2) according to rule R1 to get B ^ C ;
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so that is indicated by the notation. Now, B ^ C is of the form P ^Q. So we can
apply R3 to it in order to obtain the P , namely B .

1. A! .B ^ C / P(remise)
2. A P(remise)

3. B ^ C 1,2 R1
4. B 3 R3

B _D (goal)

Notice that one application of a rule is independent of another. It does not matter what
formula was P or Q in a previous move, for evaluation of this one. Finally, where P

is B , B _D is of the form P _Q. So we can apply R4 to get the final result.

1. A! .B ^ C / P(remise)
2. A P(remise)

3. B ^ C 1,2 R1
4. B 3 R3
5. B _D 4 R4 Win!

Notice that R4 leaves the Q unrestricted: Given some P , we can move to P _Q for
any Q. Since we reached the goal from the starting sentences, we win! In this simple
derivation system, any line of a successful derivation is a premise, or justified from
lines before by the rules.

Here are a couple more examples, this time of completed derivations.

(B)

1. A ^ C P
2. .A _ B/! D P

3. A 1 R3
4. A _ B 3 R4
5. D 2,4 R1
6. D _ .R! S/ 5 R4 Win!

A ^ C is of the form P ^ Q. So we can apply R3 to obtain the P , in this case A.
Then where P is A, we use R4 to add on a B to get A_B . .A_B/! D and A_B

are of the form P ! Q and P ; so we apply R1 to get the Q, that is D. Finally, where
D is P , D _ .R! S/ is of the form P _Q; so we apply R4 to get the final result.
Notice again that the Q may be any formula whatsoever.

Here is another example.
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(C)

1. .A ^ B/ ^D P
2. .A ^ B/! C P
3. A! .C ! .B ^D// P

4. A ^ B 1 R3
5. C 2,4 R1
6. A 4 R3
7. C ! .B ^D/ 3,6 R1
8. B ^D 7,5 R1
9. B 8 R3 Win!

You should be able to follow the steps. In this case, we use A ^ B on line (4) twice;
once as part of an application of R1 to get C , and again in an application of R3 to get
the A. Once you have a formula in your “hand” you can use it as many times and
whatever way the rules will allow. Also, the order in which we worked might have
been different. Thus, for example, we might have obtained A on line (5) and then
C after. You win if you get to the goal by the rules; how you get there is up to you.
Finally, it is tempting to think we could get B from, say, A ^ B on line (4). We will
able to do this in our official system. But the rules we have so far do not let us do so.
R3 lets us move just to the left conjunct of a formula of the form P ^Q.

When there is a way to get from the premises of some argument to its conclusion
by the rules of derivation system N, the premises prove the conclusion in system
N. In this case, where � (Gamma) is the set of premises, and P the conclusion we
write �

Ǹ
P . If �

Ǹ
P the argument is valid in derivation system N. Notice the

distinction between this “single turnstile” ` and the double turnstile � associated
with semantic validity. As usual, if Q1 : : : Qn are the members of � , we sometimes
write Q1 : : : Qn Ǹ

P in place of �
Ǹ

P . If � has no members then, listing all the
members of � individually, we simply write

Ǹ
P . In this case, P is a theorem of

derivation system N.
One can imagine setting up many different rule sets, and so many different games

of this kind. In the end, we want our game to serve a specific purpose. That is, we
want to use the game in the identification of valid arguments. In order for our games
to be an indicator of validity, we would like it to be the case that �

Ǹ
P iff � � P ,

that � proves P iff � entails P . In ?? we will show that our official derivation games
have this property.

For now, we can at least see how this might be: Roughly, we impose the following
condition on rules: we require of our rules that the inputs always semantically entail
the outputs. Then if some premises are true, and we make a move to a formula, the
formula we move to must be true; and if the formulas in our “hand” are all true, and
we add some formula by another move, the formula we add must be true; and so forth
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for each formula we add until we get to the goal, which will have to be true as well.
So if the premises are true, the goal must be true as well. We will have much more to
say about this later!

For now, notice that our rules R1, R3 and R4 each meet the proposed requirement
on rules, but R2 does not.

(D)

R1 R2 R3 R4
P Q P ! Q P / Q P _ Q / Q P ^ Q / P P / P _ Q

T T T T T T T T T T T
T F F T F T F F T T T
F T T F T T T F F F T
F F T F F F F F F F F

R1, R3 and R4 have no row where the input(s) are T and the output is F. But for
R2, the second row has input T and output F. So R2 does not meet our condition.
This does not mean that one cannot construct a game with R2 as a part. Rather,
the point is that R2 will not help us accomplish what we want to accomplish with
our games. As we demonstrate in ??, so long as rules meet the condition, a win in
the game always corresponds to an argument that is semantically valid. Thus, for
example, derivation (C), in which R2 does not appear, corresponds to the result that
.A ^ B/ ^D, .A ^ B/! C , A! .C ! .B ^D// �

s
B .

(E)

A B C D .A ^ B/ ^ D .A ^ B/ ! C A ! .C ! .B ^ D// / B

T T T T T T T T T T T T
T T T F T F T T F F F T
T T F T T T T F T T T T
T T F F T F T F T T F T

T F T T F F F T F F F F
T F T F F F F T F F F F
T F F T F F F T T T F F
T F F F F F F T T T F F

F T T T F F F T T T T T
F T T F F F F T T F F T
F T F T F F F T T T T T
F T F F F F F T T T F T

F F T T F F F T T F F F
F F T F F F F T T F F F
F F F T F F F T T T F F
F F F F F F F T T T F F

There is no row where the premises are T and the conclusion is F. As the number
of rows goes up, we may decide that the games are dramatically easier to complete
than the tables. And derivations are particularly important in the quantificational case,
where we have not yet been able to demonstrate semantic validity at all.
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E6.1. Show that each of the following is valid in N1. Complete (a) - (d) using just
rules R1, R3 and R4. You will need an application of R2 for (e).

*a. .A ^ B/ ^ C
Ǹ1

A

b. .A ^ B/ ^ C , A! .B ^ C /
Ǹ1

B

c. .A ^ B/! .B ^ A/, A ^ B
Ǹ1

B _ A

d. R, ŒR _ .S _ T /�! S
Ǹ1

S _ T

e. A
Ǹ1

A! C

*E6.2. (i) For each of the arguments in E6.1, use a truth table to decide if the argument
is sententially valid. (ii) To what do you attribute the fact that a win in N1 is
not a sure indicator of semantic validity?

6.1.2 Auxiliary Assumptions

So far, our derivations have had the following form,

(F)

a. A P(remise)
:::

b. B P(remise)

:::

c. G (goal)

We have some premise(s) at the top, and a conclusion at the bottom. The premises are
against a line which indicates the range or scope over which the premises apply. In
each case, the line extends from the premises to the conclusion, indicating that the
conclusion is derived from them. It is always our aim to derive the conclusion under
the scope of the premises alone. But our official derivation system will allow appeal
to certain auxiliary assumptions in addition to premises. Any such assumption comes
with a scope line of its own — indicating the range over which it applies. Thus, for
example, derivations might be structured as follows.
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(G)

a. A P(remise)

b. B P(remise)

c. C A(ssumption)

d.

e. G (goal)

(H)

a. A P(remise)

b. B P(remise)

c. C A(ssumption)

d. D A(ssumption)

e.

f.

g. G (goal)

In each, there are premises A through B at the top and goal G at the bottom. As indi-
cated by the main leftmost scope line, the premises apply throughout the derivations,
and the goal is derived under them. In case (G), there is an additional assumption at
(c). As indicated by its scope line, that assumption applies from (c) - (d). In (H), there
are a pair of additional assumptions. As indicated by the associated scope lines, the
first applies over (c) - (f), and the second over (d) - (e). We will say that an auxiliary
assumption, together with the formulas that fall under its scope, is a subderivation.
Thus (G) has a subderivation on from (c) - (d). (H) has a pair of subderivations, one
on (c) - (f), and another on (d) - (e). A derivation or subderivation may include various
other subderivations. Any subderivation begins with an auxiliary assumption. In
general we cite a subderivation by listing the line number on which it begins, then a
dash, and the line number on which its scope line ends.

In contexts without auxiliary assumptions, we have been able freely to appeal to
any formula already in our “hand.” Where there are auxiliary assumptions, however,
we may appeal only to accessible subderivations and formulas. A formula is accessible
at a given stage when it is obtained under assumptions all of which continue to apply.
In practice, what this means is that for justification of a formula at line number i we can
appeal only to formulas which appear immediately against scope lines extending as
far as i . Thus, for example, with the scope structure as in (I) below, in the justification
of line (6),
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(I)

1. P

2.
3. A

4. A

5.

6.�
7. A

8.

9.

10. A

11.

12.

(J)

1. P

2.
3. A

4. A

5.

6.
7. A

8.

9.

10. A

11.�

12.

we could appeal only to formulas at (1), (2) and (3), for these are the only ones
immediately against scope lines extending as far as (6). To see this, notice that scope
lines extending as far as (6), are ones cut by the arrow at (6). Formulas at (4) and (5)
are not against a line extending that far. Similarly, as indicated by the arrow in (J),
for the justification of (11), we could appeal only to formulas at (1), (2), and (10).
Formulas at other line numbers are not immediately against scope lines extending as
far as (11). The accessible formulas are ones derived under assumptions all of which
continue to apply.

It may be helpful to think of a completed subderivation as a sort of “box.” So long
as you are under the scope of an assumption, the box is open and you can “see” the
formulas under its scope. However, once you exit from an assumption, the box is
closed, and the formulas inside are no longer available.
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(I0)

1.

2.
3.

4.

5.

6.�
7.

9.

10.

11.

12.

(J0)

1.

2.
3.

4.

5.

6.
7.

8.

9.

10.

11.�

12.

Thus, again, in (I0) the formulas at (4) - (5) are locked away so that the only accessible
lines are (1) - (3). Similarly, at line (11) of (J0) all of (3) - (9) is unavailable.

Our aim is always to obtain the goal against the leftmost scope line — under the
scope of the premises alone — and if the only formulas accessible for its justification
are also against the leftmost scope line, it may appear mysterious why we would
ever introduce auxiliary assumptions and subderivations at all. What is the point of
auxiliary assumptions, if formulas under their scope are inaccessible for justification
for the formula we want? The answer is that, though the formulas inside a box are
unavailable the box may still be useful. Certain of our rules will appeal to entire
subderivations (to the boxes), rather than to the formulas in them. A subderivation
is accessible at a given stage when it is obtained under assumptions all of which
continue to apply. In practice, what this means is that for a formula at line i , we can
appeal to a box (to a subderivation) only if it (its scope line) is against a line which
extends down to i .

Thus at line (6) of (I0), we would not be able to appeal to the formulas on lines (4)
and (5) — they are inside the closed box. However, we would be able to appeal to the
box on lines (4) - (5), for it is against a scope line cut by the arrow. Similarly, at line
(11) of (J0) we are not able to appeal to formulas on any of the lines (3) - (9), for they
are inside the closed boxes. Similarly, we cannot appeal to the boxes on (4) - (5) or (7)
- (8) for they are locked inside the larger box. However, we can appeal to the larger
subderivation on (3) - (9) insofar as it is against a line cut by the arrow. Observe that
one can appeal to a box only after it is closed – so, for example, at (11) of (J0) there is
not (yet) a closed box at (10) - (11) and so no available subderivation to which one
may appeal.
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Putting this together, at (12) we can appeal to the subderivations at (3) - (9) and
(10) - (11); the ones at (4) - (5) and (7) - (8) remain inaccessible. The justification
for line (12) might therefore appeal to the formulas on lines (1) and (2) or to the
subderivations on lines (3) - (9) and (10) - (11). Again line (12) does not have access
to the formulas inside the subderivations from lines (3) - (9) and (10) - (11). So the
subderivations are accessible even where the formulas inside them are not, and there
may be a point to the subderivations even where the formulas inside the subderivation
are inaccessible.

Definitions for Auxiliary Assumptions

SD An auxiliary assumption, together with the formulas that fall under its scope, is a
subderivation.

FA A formula is accessible at a given stage when it is obtained under assumptions all of
which continue to apply.

SA A subderivation is accessible at a given stage when it (as a whole) is obtained under
assumptions all of which continue to apply.

In practice, what this means is that for justification of a formula at line i we can appeal to
another formula only if it is immediately against a scope line extending as far as i .

And in practice, for justification of a formula at line i , we can appeal to a subderivation
only if its whole scope line is itself immediately against a scope line extending as far as i .

All this will become more concrete as we turn now to the rules of our official
system ND. At this stage, we set aside the rules of our preliminary system N1 and
begin again from scratch. We can reinforce the point about accessibility of formulas
by introducing the first, and simplest, rule of our official system. If a formula P

appears on an accessible line a of a derivation, we may repeat it by the rule reiteration,
with justification a R.

R
a. P

P a R

It should be obvious why reiteration satisfies our basic condition on rules. If P is
true, of course P is true. So this rule could never lead from a formula that is true,
to one that is not. Observe, though, that the line a must be accessible. If in (I) the
assumption at line (3) were a formula P , then we could conclude P with justification
3 R at lines (5), (6), (8) or (9). We could not obtain P with the same justification at
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(11) or (12) without violating the rule, because (3) is not accessible for justification of
(11) or (12). You should be clear about why this is so.

*E6.3. Consider a derivation with the following structure.

1. P

2. A

3.

4. A

5. A

6.

7.

8.

For each of the lines (3), (6), (7) and (8) which lines are accessible? which
subderivations (if any) are accessible? That is, complete the following table.

accessible lines accessible subderivations
line 3
line 6
line 7
line 8

*E6.4. Suppose in a derivation with structure as in E6.3 we have obtained a formula
A on line (3). (i) On what lines would we be allowed to conclude A by 3
R? Suppose there is a formula B on line (4). (ii) On what lines would we be
allowed to conclude B by 4 R? Hint: this is just a question about accessibility,
asking where it is possible to use lines (3) and (4).

6.2 Sentential

Our system N1 set up the basic idea of derivations as games. We begin presentation
of our official natural deduction system ND with rules whose application is just to
sentential forms — to forms involving�, and! (and so to ^, _, and$). Though the
only operators in the forms are sentential, the forms may apply to expressions in either
a sentential language like Ls, or a quantificational one like Lq. For the most part,
though, we simply focus on Ls. In a derivation, each formula is either a premise, an
auxiliary assumption, or is justified by the rules. As we will see, auxiliary assumptions
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are always introduced in conjunction with an exit strategy. In addition to reiteration,
the sentential part of ND includes two rules for each of the five sentential operators
— for a total of eleven rules. For each of the operators, there is an ‘I’ or introduction
rule, and an ‘E’ or exploitation rule.2 As we will see, this division helps structure the
way we approach derivations: To generate a formula with main operator ?, you will
typically use the corresponding introduction rule. To make use of a formula with main
operator ?, you will typically employ the exploitation rule for that operator.

6.2.1 ! and ^

Let us start with the I- and E-rules for! and ^. We have already seen the exploitation
rule for !. It is R1 of system N1. If formulas P ! Q and P and appear on
accessible lines a and b of a derivation, we may conclude Q with justification a,b
!E.

!E

a. P ! Q

b. P

Q a,b!E

Intuitively, if it is true that if P then Q, and it is true that P , then Q must be true as
well. And, on table (D) we saw that if both P ! Q and P are true, then Q is true.
Notice that we do not somehow get the P from P ! Q. Rather, we exploit P ! Q

when, given that P also is true, we use P together with P ! Q to conclude Q. So
this rule requires two input “cards.” The P ! Q card sits idle without a P to activate
it. The order in which P ! Q and P appear does not matter so long as they are
both accessible. However, you should cite them in the standard order — line for the
conditional first, then the antecedent. As in the axiomatic system from chapter 3, this
rule is sometimes called modus ponens.

Here is an example. We show, L, L! .A ^K/, .A ^K/! .L! P /
ǸD

P .

(K)

1. L P
2. L! .A ^K/ P
3. .A ^K/! .L! P / P

4. A ^K 2,1!E
5. L! P 3,4!E
6. P 5,1!E

2I- and E-rules are often called introduction and elimination rules. This can lead to confusion as
E-rules do not necessarily eliminate anything. The above, which is becoming more common, is more
clear.
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L! .A^K/ and L and are of the form P ! Q and P where L is the P and A^K is
Q. So we use them to conclude A^K by!E on (4). But then .A^K/! .L! P /

and A ^ K are of the form P ! Q and P , so we use them to conclude Q, in this
case, L! P , on line (5). Finally L! P and L are of the form P ! Q and P , and
we use them to conclude P on (6). Notice that,

(L)
1. .A! B/ ^ C P
2. A P

3. B 1,2!E Mistake!

misapplies the rule. .A! B/ ^ C is not of the form P ! Q — the main operator
being ^, so that the formula is of the form P ^ Q. The rule !E applies just to
formulas with main operator!. If we want to use .A! B/ ^ C with A to conclude
B , we would first have to isolate A! B on a line of its own. We might have done
this in N1. But there is no rule for this (yet) in ND!
!I is our first rule that requires a subderivation. Once we understand this rule,

the rest are mere variations on a theme.!I takes as its input an entire subderivation.
Given an accessible subderivation which begins with assumption P on line a and
ends with Q against the assumption’s scope line at b, one may conclude P ! Q with
justification a-b!I.

!I

a. P A (Q,!I)

b. Q

P ! Q a-b!I

or

a. P A (g,!I)

b. Q

P ! Q a-b!I

Note that the auxiliary assumption comes with a stated exit strategy: In this case the
exit strategy includes the formula Q with which the subderivation is to end, and an
indication of the rule (!I) by which exit is to be made. We might write out the entire
formula inside the parentheses as on the left. In practice, however, this is tedious,
and it is easier just to write the formula at the bottom of the scope line where we
will need it in the end. Thus in the parentheses on the right ‘g’ is a simple pointer to
the goal formula at the end of the scope line. Note that the pointer is empty unless
there is a formula to which it points, and the exit strategy therefore is not complete
unless the goal formula is stated. In this case, the strategy includes the pointer to
the goal formula, along with the indication of the rule (!I) by which exit is to be
made. Again, at the time we make the assumption, we write the Q down as part of
the strategy for exiting the subderivation. But this does not mean the Q is justified!
The Q is rather introduced as a new goal. Notice also that the justification a-b!I
does not refer to the formulas on lines a and b. These are inaccessible. Rather, the
justification appeals to the subderivation which begins on line a and ends on line b —
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where this subderivation is accessible even though the formulas in it are not. So there
is a difference between the comma and the hyphen, as they appear in justifications.

For this rule, we assume the antecedent, reach the consequent, and conclude to
the conditional by!I. Intuitively, if an assumption P leads to Q then we know that
if P then Q. On truth tables, if there is a sententially valid argument from some other
premises together with assumption P to conclusion Q, then there is no row where
those other premises are true and the assumption P is true but Q is false — but this is
just to say that there is no row where the other premises are true and P ! Q is false.
We will have much more to say about this in ??.

For an example, suppose we are confronted with the following.

(M)

1. A! B P
2. B ! C P

A! C

In general, we use an introduction rule to produce some formula — typically one
already given as a goal.!I generates P ! Q given a subderivation that starts with
the P and ends with the Q. Thus to reach A! C , we need a subderivation that starts
with A and ends with C . So we set up to reach A! C with the assumption A and
an exit strategy to produce A ! C by!I. For this we set the consequent C as a
subgoal.

1. A! B P
2. B ! C P

3. A A (g,!I)

C

A! C

Again, we have not yet reached C or A! C . Rather, we have assumed A and set C

as a subgoal, with the strategy of terminating our subderivation by an application of
!I. This much is stated in the exit strategy. As it happens, C is easy to get.

1. A! B P
2. B ! C P

3. A A (g,!I)

4. B 1,3!E
5. C 2,4!E

A! C
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Having reached C , and so completed the subderivation, we are in a position to execute
our exit strategy and conclude A! C by!I.

1. A! B P
2. B ! C P

3. A A (g,!I)

4. B 1,3!E
5. C 2,4!E

6. A! C 3-5!I

We appeal to the subderivation that starts with the assumption of the antecedent, and
reaches the consequent. Notice that the!I setup is driven, not by available premises
and assumptions, but by where we want to get. We will say something more systematic
about strategy once we have introduced all the rules. But here is the fundamental idea:
think goal directedly. We begin with A ! C as a goal. Our idea for producing it
leads to C as a new goal. And the new goal is relatively easy to obtain.

Here is another example, one that should illustrate the above point about strategy,
as well as the rule. Say we want to show A

ǸD
B ! .C ! A/.

(N)
1. A P

B ! .C ! A/

Forget about the premise! Since the goal is of the form P ! Q, we set up to get it by
!I.

1. A P

2. B A (g,!I)

C ! A

B ! .C ! A/

We need a subderivation that starts with the antecedent, and ends with the consequent.
So we assume the antecedent, and set the consequent as a new goal. In this case, the
new goal C ! A has main operator!, so we set up again to reach it by!I.
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1. A P

2. B A (g,!I)

3. C A (g,!I)

A

C ! A

B ! .C ! A/

The pointer g in an exit strategy points to the goal formula at the bottom of its scope
line. Thus g for assumption B at (2) points to C ! A at the bottom of its line, and g
for assumption C at (3) points to A at the bottom of its line. Again, for the conditional,
we assume the antecedent, and set the consequent as a new goal. And this last goal is
particularly easy to reach. It follows immediately by reiteration from (1). Then it is a
simple matter of executing the exit strategies with which our auxiliary assumptions
were introduced.

1. A P

2. B A (g,!I)

3. C A (g,!I)

4. A 1 R

5. C ! A 3-4!I

6. B ! .C ! A/ 2-5!I

The subderivation which begins on (3) and ends on (4) begins with the antecedent
and ends with the consequent of C ! A. So we conclude C ! A on (5) by 3-4!I.
The subderivation which begins on (2) and ends at (5) begins with the antecedent and
ends with the consequent of B ! .C ! A/. So we reach B ! .C ! A/ on (6) by
2-5!I. Notice again how our overall reasoning is driven by the goals, rather than
the premises and assumptions. It is sometimes difficult to motivate strategy when
derivations are short and relatively easy. But this sort of thinking will stand you in
good stead as problems get more difficult!

Given what we have done, the E- and I- rules for ^ are completely straightforward.
If P ^Q appears on some accessible line a of a derivation, then you may move to the
P , or to the Q with justification a ^E.

^E
a. P ^Q

P a ^E

a. P ^Q

Q a ^E

Either qualifies as an instance of the rule. The left-hand case was R3 from N1.
Intuitively, ^E should be clear. If P and Q is true, then P is true. And if P and Q is
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true, then Q is true. We saw a table for the left-hand case in (D). The other is similar.
The ^ introduction rule is equally straightforward. If P and Q appear on accessible
lines a and b of a derivation, then you may move to P ^Q with justification a,b ^I.

^I

a. P

b. Q

P ^Q a,b ^I

The order in which P and Q appear is irrelevant, though you should cite them in the
specified order, line for the left conjunct first, and then for the right. If P is true and
Q is true, then P and Q is true. Similarly, on a table, any line with both P and Q

true has P ^Q true.
Here is a simple example, demonstrating the associativity of conjunction.

(O)

1. A ^ .B ^ C / P

2. A 1 ^E
3. B ^ C 1 ^E
4. B 3 ^E
5. C 3 ^E
6. A ^ B 2,4 ^I
7. .A ^ B/ ^ C 6,5 ^I

Notice that we could not get the B alone or the C alone without first isolating B ^ C

on (3). As before, our rules apply just to the main operator. In effect, we take apart
the premise with the E-rule, and put the conclusion together with the I-rule. Of course,
as with!I and!E, rules for other operators do not always let us get to the parts and
put them together in this simple and symmetric way.
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Words to the wise:

� A common mistake made by beginning students is to assimilate other rules
to ^E and ^I — moving, say, from P ! Q alone to P or Q, or from P

and Q to P ! Q. Do not forget what you have learned! Do not make this
mistake! The ^ rules are particularly easy. But each operator has its own
special character. Thus!E requires two “cards” to play. And!I takes a
subderivation as input.

� Another common mistake is to assume a formula P merely because it
would be nice to have access to P . Do not make this mistake! An assump-
tion always comes with an exit strategy, and is useful only for application of
the exit rule. At this stage, then, the only reason to assume P is to produce
a formula of the sort P ! Q by!I.

A final example brings together all of the rules so far (except R).

(P)

1. A! C P

2. A ^ B A (g,!I)

3. A 2 ^E
4. C 1,3!E
5. B 2 ^E
6. B ^ C 5,4 ^I

7. .A ^ B/! .B ^ C / 2-6!I

We set up to obtain the overall goal by!I. This generates B ^C as a subgoal. We get
B ^ C by getting the B and the C . Here is our guiding idea for strategy (which may
now seem obvious): As you focus on a goal, to generate a formula with main operator
?, consider producing it by ?I. Thus, if the main operator of a goal or subgoal is!,
consider producing the formula by!I; if the main operator of a goal is ^, consider
producing it by ^I. This much should be sufficient for you to approach the following
exercises. As you do the derivations, it is good simply to leave plenty of space on
the page for your derivation as you state goal formulas, and let there be blank lines if
room remains.3

3Typing on a computer, it is easy to push lines down if you need more room. It is not so easy with
pencil and paper, and worse with pen! If you decide to type, most word processors have a symbol font,
with the capability of assigning symbols to particular keys. Assigning keys is far more efficient than
finding characters over and over in menus.
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E6.5. Complete the following derivations by filling in justifications for each line.
Hint: it may be convenient to xerox the problems, and fill in your answers
directly on the copy.

a. 1. .A ^ B/! C

2. B ^ A

3. B

4. A

5. A ^ B

6. C

b. 1. .R! L/ ^ Œ.S _R/! .T $ K/�

2. .R! L/! .S _R/

3. R! L

4. S _R

5. .S _R/! .T $ K/

6. T $ K

c. 1. B

2. .A! B/! .B ! .L ^ S//

3. A

4. B

5. A! B

6. B ! .L ^ S/

7. L ^ S

8. S

9. L

10. S ^ L

d. 1. A ^ B

2. C

3. A

4. A ^ C

5. C ! .A ^ C /

6. C

7. B

8. B ^ C

9. C ! .B ^ C /

10. ŒC ! .A ^ C /� ^ ŒC ! .B ^ C /�
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e. 1. .A ^ S/! C

2. A

3. S

4. A ^ S

5. C

6. S ! C

7. A! .S ! C /

E6.6. The following are not legitimate ND derivations. In each case, explain why.

*a. 1. .A ^ B/ ^ .C ! B/ P

2. A 1 ^E

b. 1. .A ^ B/ ^ .C ! A/ P
2. C P

3. A 1,2!E

c. 1. .R ^ S/ ^ .C ! A/ P

2. C ! A 1 ^E
3. A 2!E

d. 1. A! B P

2. A ^ C A (g,!I)

3. A 2 ^E

4. B 1,3!E

e. 1. A! B P

2. A ^ C A (g,!I)

3. A 2 ^E
4. B 1,3!E
5. C 2 ^E
6. A ^ C 3,5 ^I

Hint: For this problem, think carefully about the exit strategy and the scope
lines. Do we have the conclusion where we want it?

E6.7. Provide derivations to show each of the following.
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a. A ^ B
ǸD

B ^ A

*b. A ^ B , B ! C
ǸD

C

c. A ^ .A! .A ^ B//
ǸD

B

d. A ^ B , B ! .C ^D/
ǸD

A ^D

*e. A! .A! B/
ǸD

A! B

f. A, .A ^ B/! .C ^D/
ǸD

B ! C

g. C ! A, C ! .A! B/
ǸD

C ! .A ^ B/

*h. A! B , B ! C
ǸD

.A ^K/! C

i. A! B
ǸD

.A ^ C /! .B ^ C /

j. D ^E, .D ! F / ^ .E ! G/
ǸD

F ^G

k. O ! B , B ! S , S ! L
ǸD

O ! L

*l. A! B
ǸD

.C ! A/! .C ! B/

m. A! .B ! C /
ǸD

B ! .A! C /

n. A! .B ! C /, D ! B
ǸD

A! .D ! C /

o. A! B
ǸD

A! .C ! B/

6.2.2 � and _

Now let us consider the I- and E-rules for � and _. The two rules for � are quite
similar to one another. Each appeals to a single subderivation. For �I, given an
accessible subderivation which begins with assumption P on line a, and ends with a
formula of the form Q ^�Q against its scope line on line b, one may conclude �P

by a-b �I. For �E, given an accessible subderivation which begins with assumption
�P on line a, and ends with a formula of the form Q ^ �Q against its scope line on
line b, one may conclude P by a-b �E.

�I

a. P A (c, �I)

b. Q ^�Q

�P a-b �I

�E

a. �P A (c, �E)

b. Q ^�Q

P a-b �E
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�I introduces an expression with main operator tilde, adding tilde to the assumption
P . �E exploits the assumption �P , with a result that takes the tilde off. For these
rules, the formula Q may be any formula, so long as �Q is it with a tilde in front.
Because Q may be any formula, when we declare our exit strategy for the assumption,
we might have no particular goal formula in mind. So, where g always points to
a formula written at the bottom of a scope line, c is not a pointer to any particular
formula. Rather, when we declare our exit strategy, we merely indicate our intent to
obtain some contradiction, and then to exit by �I or �E.

Intuitively, if an assumption leads to a result that is false, the assumption is wrong.
So if the assumption P leads to Q ^�Q, then �P ; and if the assumption �P leads
to Q^�Q, then P . On tables, there can be no row where Q^�Q is true; so if every
row where some premises together with assumption P are true would have to make
Q ^ �Q true, then there can be no row where those other premises are true and P

is true — so any row where the other premises are true is one where P is false, and
�P is therefore true. Similarly when the assumption is �P , any row where the other
premises are true has to be one where �P is false, so that P is true. Again, we will
have much more to say about this reasoning in ??.

Here are some examples of these rules. Notice that, again, we introduce subderiva-
tions with the overall goal in mind.

(Q)

1. A! B P
2. A! �B P

3. A A (c, �I)

4. B 1,3!E
5. �B 2,3!E
6. B ^�B 4,5 ^I

7. �A 3-6, �I

We begin with the goal of obtaining �A. The natural way to obtain this is by �I. So
we set up a subderivation with that in mind. Since the goal is �A, we begin with A,
and go for a contradiction. In this case, the contradiction is easy to obtain, by a couple
applications of!E and then ^I.

Here is another case that may be more interesting.
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(R)

1. �A P
2. B ! A P

3. L ^ B A (c, �I)

4. B 3 ^E
5. A 2,4!E
6. A ^�A 5,1 ^I

7. �.L ^ B/ 3-6 �I

This time, the original goal is �.L ^ B/. It is of the form �P , so we set up to
obtain it with a subderivation that begins with the P , that is, L ^ B . In this case, the
contradiction is A ^�A. Once we have the contradiction, we simply apply our exit
strategy.

A simplification. Let ? (bottom) abbreviate an arbitrary contradiction — say Z ^

�Z. Adopt a rule ?I as on the left below,

?I

a. Q

b. �Q

? a,b ?I

(S)

1. Q

2. �Q

3. �? A (c �E)

4. Q ^�Q 1,2 ^I

5. ? 3-4 �E

Given Q and�Q on accessible lines, we move directly to? by?I. This is an example
of a derived rule. For given Q and �Q, we can always derive ? as in (S) on the right.
Thus we allow ourselves to shortcut the routine by introducing ?I as a derived rule.
We will see examples of additional derived rules in ??. For now, the important thing is
that since ? abbreviates Z ^�Z we operate on ? as we might operate on Z ^�Z.
Thus, for example, we might derive ? from Z and �Z by ^I; or use ^E to conclude
Z or �Z from ?. Especially, given this abbreviation, our �I and �E rules appear in
forms,

�I

a. P A (c, �I)

b. ?

�P a-b �I

�E

a. �P A (c, �E)

b. ?

P a-b �E

Since ? is (abbreviates) the sentence Z ^ �Z, the subderivations for �I and �E
are appropriately concluded with ?. Observe that with ? at the bottom the �I and
�E rules have a particular goal sentence, very much like!I. However, the Q and
�Q required to obtain ? by ?I are the same as would be required for Q ^ �Q on
the original form of the rules. For this reason, we declare our exit strategy with a
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c rather than g any time the goal is ?. At one level, this simplification is a mere
notational convenience: having obtained Q and�Q, we move to?, instead of writing
out the complex conjunction Q ^�Q. However, there are contexts where it will be
convenient to have a particular contradiction as goal. Thus this is the standard form
in which we use these rules.

Here is an example of the rules in this form, this time for �E.

(T)

1. ��A P

2. �A A (c, �E)

3. ? 2,1 ?I

4. A 2-3 �E

It is no surprise that we can derive A from ��A! This is how to do it in ND. Again,
do not begin by thinking about the premise. The goal is A, and we can get it with a
subderivation that starts with �A, by a �E exit strategy. In this case the Q and �Q

for ?I are �A and ��A — that is �A with a tilde in front of it. Though very often
(at least in the beginning) an atomic and its negation will do for your contradiction, Q

and �Q need not be simple. Observe that �E is a strange and powerful rule: Though
an E-rule, effectively it can be used in pursuit of any goal whatsoever — to obtain
formula P by �E, all one has to do is obtain a contradiction from the assumption of
P with a tilde in front. As in this last example (T), �E is particularly useful when
the goal is an atomic formula, and thus without a main operator, so that there is no
straightforward way for regular introduction rules to apply. In this way, it plays the
role of a sort of “backdoor” introduction rule.

The _I and and _E rules apply methods we have already seen. For _I, given an
accessible formula P on line a, one may move to either P _Q or to Q _P for any
formula Q, with justification a _I.

_I
a. P

P _Q a _I

a. P

Q _P a _I

The left-hand case was R4 from N1. Also, we saw an intuitive version of this rule as
addition on p. 28. Table (D) exhibits the left-hand case. And the other side should be
clear as well: Any row of a table where P is true has both P _Q and Q _P true.

Here is a simple example.

(U)

1. P P
2. .P _Q/! R P

3. P _Q 1 _I
4. R 2,3!E
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It is easy to get R once we have P _ Q. And we build P _ Q directly from
the P . Note that we could have done the derivation as well if (2) had been, say,
(P _ ŒK ^ .L$ T /�/! R and we used _I to add ŒK ^ .L$ T /� to the P all at
once.

The inputs to _E are a formula of the form P _Q and two subderivations. Given
an accessible formula of the form P _Q on line a, with an accessible subderivation
beginning with assumption P on line b and ending with conclusion C against its
scope line at c, and an accessible subderivation beginning with assumption Q on line
d and ending with conclusion C against its scope line at e, one may conclude C with
justification a,b-c,d-e _E.

_E

a. P _Q

b. P A (g, a_E)

c. C

d. Q A (g, a_E)

e. C

C a,b-c,d-e _E

Given a disjunction P _ Q, one subderivation begins with P , and the other with
Q; both concluding with C . This time our exit strategy includes markers for the
new subgoals, along with a notation that we exit by appeal to the disjunction on line
a and _E. Intuitively, if we know it is one or the other, and either leads to some
conclusion, then the conclusion must be true. Here is an example a student gave me
near graduation time: She and her mother were shopping for a graduation dress. They
narrowed it down to dress A or dress B . Dress A was expensive, and if they bought
it, her mother would be mad. But dress B was ugly and if they bought it the student
would complain and her mother would be mad. Conclusion: her mother would be
mad — and this without knowing which dress they were going to buy! On a truth
table, if rows where P is true have C true, and rows where Q is true have C true, then
any row with P _Q true must have C true as well.

Here are a couple of examples. The first is straightforward, and illustrates both
the _I and _E rules.



CHAPTER 6. NATURAL DEDUCTION 139

(V)

1. A _ B P
2. A! C P

3. A A (g, 1_E)

4. C 2,3!E
5. B _ C 4 _I

6. B A (g, 1_E)

7. B _ C 6 _I

8. B _ C 1,3-5,6-7 _E

We have the disjunction A_B as premise, and original goal B _C . And we set up to
obtain the goal by _E. For this, one subderivation starts with A and ends with B _ C ,
and the other starts with B and ends with B _ C . As it happens, these subderivations
are easy to complete.

Very often, beginning students resist using _E — no doubt because it is relatively
messy. But this is a mistake — _E is your friend! In fact, with this rule, we have a
case where it pays to look at the premises for general strategy. Again, we will have
more to say later. But if you have a premise or accessible line of the form P _ Q,
you should go for your goal, whatever it is, by _E. Here is why: As you go for the
goal in the first subderivation, you have whatever premises were accessible before,
plus P ; and as you go for the goal in the second subderivation, you have whatever
premises were accessible before plus Q. So you can only be better off in your quest to
reach the goal. In many cases where a premise has main operator _, there is no way
to complete the derivation except by _E. The above example (V) is a case in point.

Here is a relatively messy example, which should help you be sure you understand
the _ rules. It illustrates the associativity of disjunction.
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(W)

1. A _ .B _ C / P

2. A A (g, 1_E)

3. A _ B 2 _I
4. .A _ B/ _ C 3 _I

5. B _ C A (g, 1_E)

6. B A (g, 5_E)

7. A _ B 6 _I
8. .A _ B/ _ C 7 _I

9. C A (g, 5_E)

10. .A _ B/ _ C 9 _I

11. .A _ B/ _ C 5,6-8,9-10 _E

12. .A _ B/ _ C 1,2-4,5-11 _E

The premise has main operator _. So we set up to obtain the goal by _E. This gives
us subderivations starting with A and B _ C , each with .A _ B/ _ C as goal. The
first is easy to complete by a couple instances of _I. But the assumption of the second,
B _ C has main operator _. So we set up to obtain its goal by _E. This gives us
subderivations starting with B and C , each again having .A_B/_C as goal. Again,
these are easy to complete by application of _I. The final result follows by the planned
applications of _E. If you have been able to follow this case, you are doing well!

E6.8. Complete the following derivations by filling in justifications for each line.

a. 1. �B

2. .�A _ C /! .B ^ C /

3. �A

4. �A _ C

5. B ^ C

6. B

7. ?

8. A
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b. 1. R

2. �.S _ T /

3. R! S

4. S

5. S _ T

6. ?

7. �.R! S/

c. 1. .R ^ S/ _ .K ^ L/

2. R ^ S

3. R

4. S

5. S ^R

6. .S ^R/ _ .L ^K/

7. K ^ L

8. K

9. L

10. L ^K

11. .S ^R/ _ .L ^K/

12. .S ^R/ _ .L ^K/

d. 1. A _ B

2. A

3. A! B

4. B

5. .A! B/! B

6. B

7. A! B

8. B

9. .A! B/! B

10. .A! B/! B
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e. 1. �B

2. �A! .A _ B/

3. �A

4. A _ B

5. A

6. A

7. B

8. �A

9. ?

10. A

11. A

12. ?

13. A

E6.9. The following are not legitimate ND derivations. In each case, explain why.

a. 1. A _ B P

2. B 1 _E

b. 1. �A P
2. B ! A P

3. B A (c, �I)

4. A 2,3!E

5. �B 3-4 �I

*c. 1. W P

2. R A (c, �I)

3. �W A (c, �I)

4. ? 1,3 ?I

5. �R 2-4 �I
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d. 1. A _ B P

2. A A (g, 1_E)

3. A 2 R

4. B A (g, 1_E)

5. A 3 R

6. A 1,2-3,4-5 _E

e. 1. A _ B P

2. A A (g, 1_E)

3. A 2 R

4. A A (c, �I)

5. B A (g, 1_E)

6. A 4 R

7. A 1,2-3,5-6 _E

E6.10. Produce derivations to show each of the following.

a. �A
ǸD
�.A ^ B/

b. A
ǸD
��A

*c. �A! B , �B
ǸD

A

d. A! B
ǸD
�.A ^�B/

e. �A! B , B ! A
ǸD

A

f. A ^ B
ǸD

.R$ S/ _ B

*g. A _ .A ^ B/
ǸD

A

h. S , .B _ C /! �S
ǸD
�B

i. A _ B , A! B , B ! A
ǸD

A ^ B

j. A! B , .B _ C /! D, D ! �A
ǸD
�A

k. A _ B
ǸD

B _ A

*l. A! �B
ǸD

B ! �A
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m. .A ^ B/! �A
ǸD

A! �B

n. A _��B
ǸD

A _ B

o. A _ B , �B
ǸD

A

6.2.3 $

We complete our presentation of rules for the sentential part of ND with the rules$E
and$I. Given that P $ Q abbreviates the same as .P ! Q/ ^ .Q! P /, it is not
surprising that rules for$ work like ones for arrow, but going two ways. For$E,
if formulas P $ Q and P appear on accessible lines a and b of a derivation, we
may conclude Q with justification a,b$E; and similarly but in the other direction, if
formulas P $ Q and Q appear on accessible lines a and b of a derivation, we may
conclude P with justification a,b$E.

$E

a. P $ Q

b. P

Q a,b$E

a. P $ Q

b. Q

P a,b$E

P $ Q thus works like either P ! Q or Q! P . Intuitively given P if and only
if Q, then if P is true, Q is true. And given P if and only if Q, then if Q is true P

is true. On tables, if P $ Q is true, then P and Q have the same truth value. So if
P $ Q is true and P is true, Q is true as well; and if P $ Q is true and Q is true,
P is true as well.

Given that P $ Q can be exploited like P ! Q or Q! P , it is not surprising
that introducing P $ Q is like introducing both P ! Q and Q ! P . The
input to$I is two subderivations. Given an accessible subderivation beginning with
assumption P on line a and ending with conclusion Q against its scope line on b, and
an accessible subderivation beginning with assumption Q on line c and ending with
conclusion P against its scope line on d , one may conclude P $ Q with justification,
a-b,c-d$I.

$I

a. P A (g,$I)

b. Q

c. Q A (g,$I)

d. P

P $ Q a-b,c-d$I
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Intuitively, if an assumption P leads to Q and the assumption Q leads to P , then we
know that if P then Q, and if Q then P — which is to say that P if and only if Q.
On truth tables, if there is a sententially valid argument from some other premises
together with assumption P , to conclusion Q, then there is no row where those other
premises are true and assumption P is true and Q is false; and if there is a sententially
valid argument from those other premises together with assumption Q to conclusion
P , then there is no row where those other premises are true and the assumption Q is
true and P is false; so on rows where the other premises are true, P and Q do not
have different values, and the biconditional P $ Q is true.

Here are a couple of examples. The first is straightforward, and exercises both the
$I and$E rules. We show, A$ B , B $ C

ǸD
A$ C .

(X)

1. A$ B P
2. B $ C P

3. A A (g,$I)

4. B 1,3$E
5. C 2,4$E

6. C A (g,$I)

7. B 2,6$E
8. A 1,7$E

9. A$ C 3-5,6-8$I

Our original goal is A$ C . So it is natural to set up subderivations to get it by$I.
Once we have done this, the subderivations are easily completed by applications of
$E.

Here is an interesting case that again exercises both rules. We show, A$ .B $

C /, C
ǸD

A$ B .
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ND Quick Reference (Sentential)

R (reiteration)

a. P

P a R

�I (negation intro)

a. P A (c, �I)

b. Q ^�Q .?/

�P a-b �I

�E (negation exploit)

a. �P A (c, �E)

b. Q ^�Q .?/

P a-b �E

^I (conjunction intro)

a. P

b. Q

P ^Q a,b ^I

^E (conjunction exploit)

a. P ^Q

P a ^E

^E (conjunction exploit)

a. P ^Q

Q a ^E

_I (disjunction intro)

a. P

P _Q a _I

_I (disjunction intro)

a. P

Q _P a _I

!I (conditional intro)

a. P A (g,!I)

b. Q

P ! Q a-b!I

!E (conditional exploit)

a. P ! Q

b. P

Q a,b!E

_E (disjunction exploit)

a. P _Q

b. P A (g, a_E)

c. C

d. Q A (g, a_E)

e. C

C a,b-c,d-e _E

$I (biconditional intro)

a. P A (g,$I)

b. Q

c. Q A (g,$I)

d. P

P $ Q a-b,c-d$I

$E (biconditional exploit)

a. P $ Q

b. P

Q a,b$E

$E (biconditional exploit)

a. P $ Q

b. Q

P a,b$E

derived rule:

?I (bottom intro)

a. Q

b. �Q

? a,b ?I
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(Y)

1. A$ .B $ C / P
2. C P

3. A A (g,$I)

4. B $ C 1,3$E
5. B 4,2$E

6. B A (g,$I)

7. B A (g,$I)

8. C 2 R

9. C A (g,$I)

10. B 6 R

11. B $ C 7-8,9-10$I
12. A 1,11$E

13. A$ B 3-5,6-12$I

We begin by setting up the subderivations to get A$ B by$I. This first is easily
completed with a couple applications of$E. To reach the goal for the second by
means of the premise (1) we need B $ C as our second “card.” So we set up to
reach that. As it happens, the extra subderivations at (7) - (8) and (9) - (10) are easy
to complete. Again, if you have followed so far, you are doing well. We will be in a
better position to create such derivations after our discussion of strategy.

So much for the rules for this sentential part of ND. Before we turn in the next
sections to strategy, let us note a couple of features of the rules that may so-far have
gone without notice. First, premises are not always necessary for ND derivations.
Thus, for example,

ǸD
A! A.

(Z)
1. A A (g,!I)

2. A 1 R

3. A! A 1-2!I

If there are no premises, do not panic! Begin in the usual way. In this case, the original
goal is A! A. So we set up to obtain it by!I. And the subderivation is particularly
simple. Notice that our derivation of A! A corresponds to the fact from truth tables
that �

s
A! A. And we need to be able to derive A! A from no premises if there is

to be the right sort of correspondence between derivations in ND and semantic validity
— if we are to have � � P iff �

ǸD
P .

Second, observe again that every subderivation comes with an exit strategy. The
exit strategy says whether you intend to complete the subderivation with a particular
goal, or by obtaining a contradiction, and then how the subderivation is to be used
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once complete. There are just five rules which appeal to a subderivation:!I, �I, �E,
_E, and$I. You will complete the subderivation, and then use it by one of these
rules. So these are the only rules which may appear in an exit strategy. If you do not
understand this, then you need to go back and think about the rules until you do.

Finally, it is worth noting a strange sort of case, with application to rules that can
take more than one input of the same type. Consider a simple demonstration that
A

ǸD
A ^ A. We might proceed as in (AA) on the left,

(AA)
1. A P

2. A 1 R
3. A ^ A 1,2 ^I

(AB)
1. A P

3. A ^ A 1,1 ^I

We begin with A, reiterate so that A appears on different lines, and apply ^I. But we
might have proceeded as in (AB) on the right. The rule requires an accessible line on
which the left conjunct appears — which we have at (1), and an accessible line on
which the right conjunct appears which we also have on (1). So the rule takes an input
for the left conjunct and an input for the right — they just happen to be the same thing.
A similar point applies to rules _E and$I which take more than one subderivation
as input. Suppose we want to show A _ A

ǸD
A.4

(AC)

1. A _ A P

2. A A (g, 1_E)

3. A 2 R

4. A A (g, 1_E)

5. A 4 R

6. A 1,2-3,4-5 _E

(AD)

1. A _ A P

2. A A (g, 1_E)

3. A 2 R

4. A 1,2-3,2-3 _E

In (AC), we begin in the usual way to get the main goal by _E. This leads to the
subderivations (2) - (3) and (4) - (5), the first moving from the left disjunct to the goal,
and the second from the right disjunct to the goal. But the left and right disjuncts are
the same! So we might have simplified as in (AD). _E still requires three inputs: First
an accessible disjunction, which we find on (1); second an accessible subderivation
which moves from the left disjunct to the goal, which we find on (2) - (3); third a
subderivation which moves from the right disjunct to the goal — but we have this
on (2) - (3). So the justification at (4) of (AD) appeals to the three relevant facts, by
appeal to the same subderivation twice. Similarly one could imagine a quick-and-dirty
demonstration that

ǸD
A$ A.

4I am reminded of an irritating character in Groundhog Day who repeatedly asks, “Am I right or am
I right?” If he implies that the disjunction is true, it follows that he is right.
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E6.11. Complete the following derivations by filling in justifications for each line.

a. 1. A$ B

2. A

3. B

4. A! B

b. 1. A$ B

2. �B

3. A

4. B

5. ?

6. �A

c. 1. A$ �A

2. A

3. �A

4. ?

5. �A

6. A

7. ?

8. �.A$ �A/

d. 1. A

2. �A

3. A

4. �A! A

5. �A! A

6. �A

7. A

8. ?

9. A

10. A$ .�A! A/
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e. 1. �A

2. �B

3. A

4. �B

5. ?

6. B

7. B

8. �A

9. ?

10. A

11. A$ B

E6.12. Each of the following are not legitimate ND derivations. In each case, explain
why.

a. 1. A P
2. B P

3. A$ B 1,2$I

b. 1. A! B P
2. B P

3. A 1,2!E

*c. 1. A$ B P

2. A 1$E

d. 1. B P

2. A A (g,$I)

3. B 1 R

4. B A (g,$I)

5. A 2 R

6. A$ B 2-3,4-5$I
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e. 1. �A P

2. B A (g,!I)

3. �A A (g,$I)

4. B 2 R

5. B 2 R

6. B ! B 2-5!I
7. B A (g,$I)

8. �A 1 R

9. �A$ B 3-4,7-8$I

E6.13. Produce derivations to show each of the following.

*a. .A ^ B/$ A
ǸD

A! B

b. A$ .A _ B/
ǸD

B ! A

c. A$ B , B $ C , C $ D, �A
ǸD
�D

d. A$ B
ǸD

.A! B/ ^ .B ! A/

*e. A$ .B ^ C /, B
ǸD

A$ C

f. .A! B/ ^ .B ! A/
ǸD

.A$ B/

g. A! .B $ C /
ǸD

.A ^ B/$ .A ^ C /

h. A$ B , C $ D
ǸD

.A ^ C /$ .B ^D/

i.
ǸD

A$ A

j.
ǸD

.A ^ B/$ .B ^ A/

*k.
ǸD
��A$ A

l.
ǸD

.A$ B/! .B $ A/

m. .A ^ B/$ .A ^ C /
ǸD

A! .B $ C /

n. �A! B , A! �B
ǸD
�A$ B

o. A, B
ǸD
�A$ �B
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6.2.4 Strategies for a Goal

It is natural to introduce derivation rules, as we have, with relatively simple cases.
And you may or may not have been able to see from the start in some cases how
derivations would go. But derivations are not always so simple, and (short of genius)
nobody can always see how they go. Perhaps this has already been an issue! So we
want to think about derivation strategies. As we shall see later, for the quantificational
case at least, it is not possible to produce a mechanical algorithm adequate to complete
every completable derivation. However, as with chess or other games of strategy, it is
possible to say a good deal about how to approach problems effectively. We have said
quite a bit already. In this section, we pull together some of the themes, and present
the material more systematically.

For natural derivation systems, the overriding strategy is to work goal directedly.
What you do at any stage is directed primarily, not by what you have, but by where
you want to be. Suppose you are trying to show that �

ǸD
P . You are given P as

your goal. Perhaps it is tempting to begin by using E-rules to “see what you can get”
from the members of � . There is nothing wrong with a bit of this in order to simplify
your premises (like arranging the cards in your hand into some manageable order),
but the main work of doing a derivation does not begin until you focus on the goal.
This is not to say that your premises play no role in strategic thinking. Rather, it is to
rule out doing things with them which are not purposefully directed at the end. In the
ordinary case, applying the strategies for your goal dictates some new goal; applying
strategies for this new goal dictates another; and so forth, until you come to a goal
that is easily achieved.

The following strategies for a goal are arranged in rough priority order:

SG 1. If accessible lines contain explicit contradiction, use �E to reach goal.

2. Given an accessible formula with main operator _, use _E to reach goal.

3. If goal is “in” accessible lines (set goals and) attempt to exploit it out.

4. To reach goal with main operator ?, use ?I (careful with _).

5. Try �E (especially for atomics and sentences with _ as main operator).

If a high priority strategy applies, use it. If one does not apply, simply “fall through”
to the next. The priority order is not necessarily a frequency order. The frequency will
likely be something like SG4, SG3, SG5, SG2, SG1. But high priority strategies are
such that you should adopt them if they are available — even though most often you
will fall through to ones that are more frequently used. I take up the strategies in the
priority order.
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SG1 If accessible lines contain explicit contradiction, use �E to reach goal. For
goal B, with an explicit contradiction accessible, you can simply assume �B, use
your contradiction, and conclude B.

given

a. A

b. �A

B (goal)

use

a. A

b. �A

c. �B A (c, �E)

d. ? a,b ?I
B c-d �E

That is it! No matter what your goal is, given an accessible contradiction, you can
reach that goal by �E. Since this strategy always delivers, you should jump on it
whenever it is available. As an example, try to show, A, �A

ǸD
.R ^ S/! T . Your

derivation need not involve!I. Hint: I mean it! This section will be far more valuable
if you work these examples, and so think through the steps. Here it is in two stages.

(AE)

1. A P
2. �A P

3. �Œ.R _ S/! T � A (c, �E)

.R _ S/! T

1. A P
2. �A P

3. �Œ.R _ S/! T � A (c, �E)

4. ? 1,2 ?I

5. .R _ S/! T 3-4 �E

As soon as we see the accessible contradiction, we assume the negation of our goal,
with a plan to exit by �E. This is accomplished on the left. Then it is a simple matter
of applying the contradiction, and going to the conclusion by �E.

For this strategy, it is not required that accessible lines “contain” a contradiction
only when you already have Q and �Q for ?I. However, the intent is that it should
be no real work to obtain them. Perhaps an application of ^E or the like does the job.
It should be possible to obtain the contradiction directly by some E-rule(s). If you
can do this, then your derivation is over: assuming the opposite, applying the rules,
and then �E reaches the goal. If there is no simple way to obtain a contradiction, fall
through to the next strategy.

SG2 Given an accessible formula with main operator _, use _E to reach goal. As
suggested above, you may prefer to avoid _E. But this is a mistake — _E is your
friend! Suppose you have some accessible lines including a disjunction A _B with
goal C . If you go for that very goal by _E, the result is a pair of subderivations with
goal C — where, in the one case, all those very same accessible lines and A are
accessible, and in the other case, all those very same lines and B are accessible. So,
in each subderivation, you can only be better off in your attempt to reach C .
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given
a. A _B

C (goal)
use

a. A _B

b. A A (g, a_E)

c. C (goal)

d. B A (g, a_E)

e. C (goal)

C a,b-c,d-e _E

As an example, try to show, A! B , A _ .A ^ B/
ǸD

A ^ B . Try showing it
without _E! Here is the derivation in stages.

(AF)

1. A! B P
2. A _ .A ^ B/ P

3. A A (g, 2_E)

A ^ B

A ^ B A (g, 2_E)

A ^ B

A ^ B

1. A! B P
2. A _ .A ^ B/ P

3. A A (g, 2_E)

4. B 1,3!E
5. A ^ B 3,4 ^I

6. A ^ B A (g, 2_E)

7. A ^ B 6 R

8. A ^ B 1,2-5,6-7 _E

When we start, there is no accessible contradiction. So we fall through to SG2. Since
a premise has main operator _, we set up to get the goal by _E. This leads to a pair of
simple subderivations. Once we do this, we treat the disjunction as effectively “used
up” so that SG2 does not apply to it again. Notice that there is almost nothing one
could do except set up this way — and that once you do, it is easy!

SG3 If goal is “in” accessible lines (set goals and) attempt to exploit it out. In most
derivations, you will work toward goals which are successively closer to what can be
obtained directly from accessible lines. And you finally come to a goal which can be
obtained directly. If it can be obtained directly, do so! In some cases, however, you
will come to a stage where your goal exists in accessible lines, but can be obtained
only by means of some other result. In this case, you can set that other result as a new
goal. A typical case is as follows.

given
a. A! B

B (goal)
use

a. A! B

b. A (goal)
B a,b!E
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The B exists in the premises. You cannot get it without the A. So you set A as a
new goal and use it to get the B. It is impossible to represent all the cases where this
strategy applies. The idea is that the complete goal exists in accessible lines, and can
either be obtained directly by an E-rule, or by an E-rule with some new goal. Observe
that the strategy would not apply in case you have A! B and are going for A. Then
the goal exists as part of a premise all right. But there is no obvious result such that
obtaining it would give you a way to exploit A! B to get the A.

As an example, let us try to show .A ! B/ ^ .B ! C /, .L $ S/ ! A,
.L$ S/ ^H

ǸD
C . Here is the derivation in four stages.

(AG)

1. .A! B/ ^ .B ! C / P
2. .L$ S/! A P
3. .L$ S/ ^H P

4. B ! C 1 ^E

B

C 4, !E

1. .A! B/ ^ .B ! C / P
2. .L$ S/! A P
3. .L$ S/ ^H P

4. B ! C 1 ^E
5. A! B 1 ^E

A

B 5, !E
C 4, !E

The original goal C exists in the premises, as the consequent of the right conjunct of
(1). It is easy to isolate the B ! C , but this leaves us with the B as a new goal to
get the C . B also exists in the premises, as the consequent of the left conjunct of (1).
Again, it is easy to isolate A! B , but this leaves us with A as a new goal. We are not
in a position to fill in the entire justification for our new goals, but there is no harm
filling in what we can, to remind us where we are going. So far, so good.

1. .A! B/ ^ .B ! C / P
2. .L$ S/! A P
3. .L$ S/ ^H P

4. B ! C 1 ^E
5. A! B 1 ^E

L$ S

A 2, !E
B 5, !E
C 4, !E

1. .A! B/ ^ .B ! C / P
2. .L$ S/! A P
3. .L$ S/ ^H P

4. B ! C 1 ^E
5. A! B 1 ^E
6. L$ S 3 ^E
7. A 2,6!E
8. B 5,7!E
9. C 4,8!E

But A also exists in the premises, as the consequent of (2); to get it, we set L$ S as
a goal. But L$ S exists in the premises, and is easy to get by ^E. So we complete
the derivation with the steps that motivated the subgoals in the first place. Observe
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the way we move from one goal to the next, until finally there is a stage where SG3
applies in its simplest form, so that L$ S is obtained directly.

SG4 To reach goal with main operator ?, use ?I (careful with _). This is the most
frequently used strategy, the one most likely to structure your derivation as a whole.
�E to the side, the basic structure of I-rules and E-rules in ND gives you just one way
to generate a formula with main operator ?, whatever that may be. In the ordinary case,
then, you can expect to obtain a formula with main operator ? by the corresponding
I-rule. Thus, for a typical example,

given
A! B (goal)

use

a. A A (g,!I)

b. B (goal)

A! B a-b!I

Again, it is difficult to represent all the cases where this strategy might apply. It
makes sense to consider it for formulas with any main operator. Be cautious, however,
for formulas with main operator _. There are cases where it is possible to prove
a disjunction, but not to prove it by _I — as one might have conclusive reason to
believe the butler or the maid did it, without conclusive reason to believe the butler
did it, or conclusive reason to believe the maid did it (perhaps the butler and maid
were the only ones with means and motive). You should consider the strategy for _.
But it does not always work.

As an example, let us show D
ǸD

A! .B ! .C ! D//. Here is the derivation
in four stages.

(AH)

1. D P

2. A A (g,!I)

B ! .C ! D/

A! .B ! .C ! D// 2- !I

1. D P

2. A A (g,!I)

3. B A (g,!I)

C ! D

B ! .C ! D/ 3- !I

A! .B ! .C ! D// 2- !I

Initially, there is no contradiction or disjunction in the premises, and neither do we
see the goal. So we fall through to strategy SG4 and, since the main operator of the
goal is!, set up to get it by!I. This gives us B ! .C ! D/ as a new goal. Since
this has main operator!, and it remains that other strategies do not apply, we fall
through to SG4, and set up to get it by!I. This gives us C ! D as a new goal.
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1. D P

2. A A (g,!I)

3. B A (g,!I)

4. C A g,! I )

D

C ! D 4- !I

B ! .C ! D/ 3- !I

A! .B ! .C ! D// 2- !I

1. D P

2. A A (g,!I)

3. B A (g,!I)

4. C A g,! I )

5. D 1 R

6. C ! D 4-5!I

7. B ! .C ! D/ 3-6!I

8. A! .B ! .C ! D// 2-7!I

As before, with C ! D as the goal, there is no contradiction on accessible lines,
no accessible formula has main operator _, and the goal does not itself appear on
accessible lines. Since the main operator is!, we set up again to get it by!I. This
gives us D as a new subgoal. But D does exist on an accessible line. Thus we are
faced with a particularly simple instance of strategy SG3. To complete the derivation,
we simply reiterate D from (1), and follow our exit strategies as planned.

SG5 Try �E (especially for atomics and sentences with _ as main operator). The
previous strategy has no application to atomics, because they have no main operator,
and we have suggested that it is problematic for disjunctions. This last strategy applies
particularly in those cases. So it is applicable in cases where other strategies seem not
to apply.

given
A (goal)

use

a. �A A (c, �E)

b. ?

A a-b �E

It is possible to obtain any formula by �E, by assuming the negation of it and going
for a contradiction. So this strategy is generally applicable. And it cannot hurt: If you
could have reached the goal anyway, you can obtain the goal A under the assumption,
and then use it for a contradiction with the assumed �A — which lets you exit the
assumption with the A you would have had anyway. And the assumption may help:
for, as with _E, in going for the contradiction you have whatever accessible lines you
had before, plus the new assumption. And, in many cases, the assumption puts you in
a position to make progress you would not have been able to make before.

As a simple example of the strategy, try showing, �A! B , �B
ǸD

A. Here is
the derivation in two stages.
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(AI)

1. �A! B P
2. �B P

3. �A A (c, �E)

?

A 3- �E

1. �A! B P
2. �B P

3. �A A (c, �E)

4. B 1,3!E
5. ? 4,2 ?I

6. A 3-5 �E

Sometimes the occasion between this strategy and SG1 can seem obscure (and, in the
end, it may not be all that important to separate them). However, for the first strategy,
accessible lines by themselves are sufficient for a contradiction. In this example, from
the premises we have �B , but cannot get the B and so do not have a contradiction
from the premises alone. So SG1 does not apply. There is no formula with main
operator _. Similarly, though �A is in the antecedent of (1), there is no obvious way
to exploit the premise to isolate the A; so we do not see the goal in the relevant form
in the premises. The goal A has no operators, so it has no main operator and strategy
SG4 does not apply. So we fall through to strategy SG5, and set up to get the goal by
�E. In this case, the subderivation is particularly easy to complete. Perhaps the case
is too easy. Still, in contrast to SG1, the contradiction does not become available until
after you make the assumption. In the case of SG1, it is the prior availability of the
contradiction that drives your assumption.

Here is an extended example which combines a number of the strategies considered
so far. We show that B _ A

ǸD
�A! B . You want especially to absorb the mode

of thinking about this case as a way to approach exercises.

(AJ)
1. B _ A P

�A! B

There is no contradiction in accessible premises; so strategy SG1 is inapplicable.
Strategy SG2 tells us to go for the goal by _E. Another option is to fall through to
SG4 and go for �A! B by!I and then apply _E to get the B , but!I has lower
priority, and let us follow the official procedure.
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1. B _ A P

2. B A (g, 1_E)

�A! B

A A (g, 1_E)

�A! B

�A! B 1, , _E

Given an accessible line with main operator _,

use _E to reach goal.

Having set up for _E on line (1), we treat B _ A as effectively “used up” and so out
of the picture. Concentrating, for the moment, on the first subderivation, there is no
contradiction on accessible lines; neither is there another accessible disjunction; and
the goal is not in the premises. So we fall through to SG4.

1. B _ A P

2. B A (g, 1_E)

3. �A A (g,!I)

B

�A! B 3- !I

A A (g, 1_E)

�A! B

�A! B 1, , _E

To reach goal with main operator!, use!I.

In this case, the subderivation is easy to complete. The new goal, B exists as such in
the premises. So we are faced with a simple instance of SG3, and so can complete the
subderivation.

1. B _ A P

2. B A (g, 1_E)

3. �A A (g,!I)

4. B 2 R

5. �A! B 3-4!I

6. A A (g, 1_E)

�A! B

�A! B 1, , _E

The first subderivation is completed by reiter-

ating B from line (2), and following the exit

strategy.
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For the second main subderivation tick off in your head: there is no accessible
contradiction; neither is there another accessible formula with main operator _; and
the goal is not in the premises. So we fall through to strategy SG4.

1. B _ A P

2. B A (g, 1_E)

3. �A A (g,!I)

4. B 2 R

5. �A! B 3-4!I

6. A A (g, 1_E)

7. �A A (g,!I)

B

�A! B 7- !I

�A! B 1, , _E

To reach goal with main operator!, use!I.

In this case, there is an accessible contradiction at (6) and (7). So SG1 applies, and we
are in a position to complete the derivation as follows.

1. B _ A P

2. B A (g, 1_E)

3. �A A (g,!I)

4. B 2 R

5. �A! B 3-4!I

6. A A (g, 1_E)

7. �A A (g,!I)

8. �B A (c, �E)

9. ? 6,7 ?I

10. B 8-9 �E

11. �A! B 7-10!I

12. �A! B 1,2-5,6-11 _E

If accessible lines contain explicit contradiction,

use �E to reach goal.

This derivation is fairly complicated! But we did not need to see how the whole thing
would go from the start. Indeed, it is hard to see how one could do so. Rather it was
enough to see, at each stage, what to do next. That is the beauty of our goal-oriented
approach.

A couple of final remarks before we turn to exercises: First, as we have said from
the start, assumptions are only introduced in conjunction with exit strategies. This
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almost requires goal-directed thinking. And it is important to see how pointless are
assumptions without an exit strategy! Results inside subderivations cannot be used for
a final conclusion except insofar as there is a way to exit the subderivation and use it
whole. So the point of the strategy is to ensure that the subderivation has a use for
getting where you want to go.

Second, in going for a contradiction, as with SG4 or SG5, the new goal is not a
definite formula — any contradiction is sufficient for the rule and for a derivation of
?. So the strategies for a goal do not directly apply. This motivates the “strategies
for a contradiction” of the next section. For now, I will say just this: If there is a
contradiction to be had, and you can reduce formulas on accessible lines to atomics
and negated atomics, the contradiction will appear at that level. So one way to go for
a contradiction is simply by applying E-rules to accessible lines, to generate what
atomics and negated atomics you can.

Proof for the following theorems are left as exercises. You should not start them
now, but wait for the assignment in E6.16. The first three may remind you of axioms
from chapter 3 and the fourth has an application in ??. The others foreshadow rules
from the system ND+, which we will see shortly.

T6.1.
ǸD

P ! .Q! P /

T6.2.
ǸD

.O ! .P ! Q//! ..O ! P /! .O ! Q//

*T6.3.
ǸD

.�Q! �P /! ..�Q! P /! Q/

T6.4. A! .B ! C/; D ! .C ! E/; D ! B
ǸD

A! .D ! E/

T6.5. A! B, �B
ǸD
�A

T6.6. A! B, B ! C
ǸD

A! C

T6.7. A _B, �A
ǸD

B

T6.8. A _B, �B
ǸD

A
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T6.9. A$ B, �A
ǸD
�B

T6.10. A$ B, �B
ǸD
�A

T6.11.
ǸD

.A ^B/$ .B ^A/

T6.12.
ǸD

.A$ B/$ .B $ A/

*T6.13.
ǸD

.A _B/$ .B _A/

T6.14.
ǸD

.A! B/$ .�B ! �A/

T6.15.
ǸD

ŒA! .B ! C/�$ Œ.A ^B/! C �

T6.16.
ǸD

ŒA ^ .B ^ C/�$ Œ.A ^B/ ^ C �

T6.17.
ǸD

ŒA _ .B _ C/�$ Œ.A _B/ _ C �

T6.18.
ǸD

A$ ��A

T6.19.
ǸD

A$ .A ^A/

T6.20.
ǸD

A$ .A _A/

E6.14. For each of the following, (i) which goal strategy applies? and (ii) what is
the next step? If the strategy calls for a new subgoal, show the subgoal; if it
calls for a subderivation, set up the subderivation. In each case, explain your
response. Hint: Each goal strategy applies once.
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a. 1. �A _ B P
2. A P

B

b. 1. J ^ S P
2. S ! K P

K

*c. 1. �A$ B P

B $ �A

d. 1. A$ �B P
2. �A P

B

e. 1. A ^ B P
2. �A P

K _ J

E6.15. Produce derivations to show each of the following. No worked out answers
are provided. However, if you get stuck, you will find strategy hints in the
back.

*a. A$ .A! B/
ǸD

A! B

*b. .A _ B/! .B $ D/, B
ǸD

B ^D

*c. �.A ^ C /, �.A ^ C /$ B
ǸD

A _ B

*d. A ^ .C ^�B/, .A _D/! �E
ǸD
�E

*e. A! B , B ! C
ǸD

A! C

*f. .A ^ B/! .C ^D/
ǸD

Œ.A ^ B/! C � ^ Œ.A ^ B/! D�

*g. A! .B ! C /, .A ^D/! E, C ! D
ǸD

.A ^ B/! E
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*h. .A! B/ ^ .B ! C /, Œ.D _E/ _H�! A, �.D _E/ ^H
ǸD

C

*i. A! .B ^ C /, �C
ǸD
�.A ^D/

*j. A! .B ! C /, D ! B
ǸD

A! .D ! C /

*k. A! .B ! C /
ǸD
�C ! �.A ^ B/

*l. .A ^�B/! �A
ǸD

A! B

*m. �B $ A, C ! B , A ^ C
ǸD
�K

*n. �A
ǸD

A! B

*o. �A$ �B
ǸD

A$ B

*p. .A _ B/ _ C , B $ C
ǸD

C _ A

*q.
ǸD

A! .A _ B/

*r.
ǸD

A! .B ! A/

*s.
ǸD

.A$ B/! .A! B/

*t.
ǸD

.A ^�A/! .B ^�B/

*u.
ǸD

.A! B/! Œ.C ! A/! .C ! B/�

*v.
ǸD

Œ.A! B/ ^�B�! �A

*w.
ǸD

A! ŒB ! .A! B/�

*x.
ǸD
�A! Œ.B ^ A/! C �

*y.
ǸD

.A! B/! Œ�B ! �.A ^D/�

*E6.16. Produce derivations to demonstrate each of T6.1 - T6.20. This is a mix —
some repetitious, some challenging! But, when we need the results later, we
will be glad to have done them now. Hint: do not worry if one or two get a bit
longer than you are used to — they should!
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6.2.5 Strategies for a Contradiction

In going for a contradiction, the Q and �Q can be any sentence. So the strategies for
reaching a definite goal do not apply. This motivates strategies for a contradiction.
Again, the strategies are in rough priority order.

SC 1. Break accessible formulas down into atomics and negated atomics.

2. Given a disjunction in a subderivation for �E or �I, go for ? by _E.

3. Set as goal the opposite of some negation (something that cannot itself be
broken down). Then apply strategies for a goal to reach it.

4. For some P such that both P and �P lead to contradiction: Assume P

(�P ), obtain the first contradiction, and conclude �P (P ); then obtain
the second contradiction — this is the one you want.

Again, the priority order is not the frequency order. The frequency is likely to be
something like SC1, SC3, SC4, SC2. Also sometimes, but not always, SC3 and SC4
coincide: in deriving the opposite of some negation, you end up assuming a P such
that P and �P lead to contradiction.

SC1. Break accessible formulas down into atomics and negated atomics. As we
have already said, if there is a contradiction to be had, and you can break premises
into atomics and negated atomics, the contradiction will appear at that level. Thus, for
example,

(AK)

1. A ^ B P
2. �B P

3. C A (c, �I)

?

�C 2- �I

1. A ^ B P
2. �B P

3. C A (c, �I)

4. A 1 ^E
5. B 1 ^E
6. ? 5,2 ?I

7. �C 3-6 �I

Our strategy for the main goal is SG4 with an application of �I. Then the aim is
to obtain a contradiction. And our first thought is to break accessible lines down
to atomics and negated atomics. Perhaps this example is too simple. And you may
wonder about the point of getting A at (4) — there is no need for A at (4). But this
merely illustrates the point: if you can get to atomics and negated atomics (“randomly”
as it were) the contradiction will appear in the end.
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As another example, try showing A^.B^�C /,�F ! D, .A^D/! C
ǸD

F .
Here is the completed derivation in two stages.

(AL)

1. A ^ .B ^�C / P
2. �F ! D P
3. .A ^D/! C P

4. �F A (c, �E)

?

F 4- �E

1. A ^ .B ^�C / P
2. �F ! D P
3. .A ^D/! C P

4. �F A (c, �E)

5. D 2,4!E
6. A 1 ^E
7. A ^D 6,5 ^I
8. C 3,7!E
9. B ^�C 1 ^E

10. �C 9 ^E
11. ? 8,10 ?I

12. F 4-11 �E

This time, our strategy for the goal falls through to SG5. After that, again, our goal is
to obtain a contradiction — and our first thought is to break premises down to atomics
and negated atomics. The assumption �F gets us D with (2). We can get A from
(1), and then C with the A and D together. Then �C follows from (1) by a couple
applications of ^E. You might proceed to get the atomics in a different order, but the
basic idea of any such derivation is likely to be the same.

SC2. Given a disjunction in a subderivation for �E or �I, go for ? by _E. This
strategy applies only occasionally, though it is related to one that is common for the
quantificational case. In most cases, you will have applied _E by SG2 prior to setting
up for �E or �I. In some cases, however, a disjunction is “uncovered” only inside
a subderivation for a tilde rule. In any such case, SC2 has high priority for the same
reasons as SG2: You can only be better off in your attempt to reach a contradiction
inside the subderivations for _E than before. So the strategy says to set ? as the goal
you need for �E or �I, and go for it by _E.
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given

a. P A (c, �I)

b. A _B

?

�P a- �I

use

a. P A (c, �I)

b. A _B

c. A A (c, b_E)

d. ?

e. B A (c, c_E)

f. ?

g. ? b,c-d,e-f _E

�P a-g �I

Observe that, since the subderivations for _E have goal ?, they have exit strategy c

rather than g. Here is another advantage of our standard use of ?. Because ? is a
particular sentence, it works as a goal sentence for this rule. We might obtain ? by
one contradiction in the first subderivation, and by another in the second. But, once
we have obtained ? in each, we are in a position to exit by _E in the usual way, and
so to apply �I.

Here is an example. We show �A^�B
ǸD
�.A_B/. The derivation is in four

stages.

(AM)

1. �A ^�B P

2. A _ B A (c, �I)

?

�.A _ B/ 2- �I

1. �A ^�B P

2. A _ B A (c, �I)

3. A A (c, 2_E)

?

B A (c, 2_E)

?

? 2, , _E

�.A _ B/ 2- �I

In this case, our strategy for the goal is SG4. The disjunction appears only inside the
subderivation as the assumption for �I. We might obtain �A and �B from (1) but
after that, there are no more atomics or negated atomics to be had. So we fall through
to SC2, with ? as the goal for _E.
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1. �A ^�B P

2. A _ B A (c, �I)

3. A A (c, 2_E)

4. �A 1 ^E
5. ? 3,4 ?I

6. B A (c, 2_E)

?

? 2,3-5, _E

�.A _ B/ 2- �I

1. �A ^�B P

2. A _ B A (c, �I)

3. A A (c, 2_E)

4. �A 1 ^E
5. ? 3,4 ?I

6. B A (c, 2_E)

7. �B 1 ^E
8. ? 6,7 ?I

9. ? 2,3-5,6-8 _E

10. �.A _ B/ 2-9 �I

The first subderivation is easily completed from atomics and negated atomics. And the
second is completed the same way. Observe that it is only because of our assumptions
for _E that we are able to get the contradictions at all.

SC3. Set as goal the opposite of some negation (something that cannot itself be
broken down). Then apply standard strategies for the goal. You will find yourself
using this strategy often, after SC1. In the ordinary case, if accessible formulas cannot
be broken into atomics and negated atomics, it is because complex forms are “sealed
off” by main operator �. The tilde blocks SC1 or SC2. But you can turn this lemon to
lemonade: taking the complex �Q as one half of a contradiction, set Q as goal. For
some complex Q,

given

a. �Q

b. A A (c, �I)

?

�A

use

a. �Q

b. A A (c, �I)

c Q (goal)
? c,a ?I

�A

We are after a contradiction. Supposing that we cannot break �Q into its parts, our
efforts to apply other strategies for a contradiction are frustrated. But SC3 offers an
alternative: Set Q itself as a new goal and use this with�Q to reach?. Then strategies
for the new goal take over. If we reach the new goal, we have the contradiction we
need.

As an example, try showing B , �.A ! B/
ǸD
�A. Here is the derivation in

four stages.
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(AN)

1. B P
2. �.A! B/ P

3. A A (c, �I)

?

�A 3- �I

1. B P
2. �.A! B/ P

3. A A (c, �I)

A! B (goal)
? ,2 ?I

�A 3- �I

Our strategy for the goal is SG4; for main operator � we set up to get the goal by
�I. So we need a contradiction. In this case, there is nothing to be done by way of
obtaining atomics and negated atomics, and there is no disjunction. So we fall through
to strategy SC3. �.A! B/ on (2) has main operator �, so we set A! B as a new
subgoal with the idea to use it for contradiction.

1. B P
2. �.A! B/ P

3. A A (c, �I)

4. A A (g,!I)

B (goal)

A! B 4- !I
? ,2 ?I

�A 3- �I

1. B P
2. �.A! B/ P

3. A A (c, �I)

4. A A (g,!I)

5. B 1 R

6. A! B 4-5!I
7. ? 6,2 ?I

8. �A 3-7 �I

Since A ! B is a definite subgoal, we proceed with strategies for the goal in the
usual way. The main operator is! so we set up to get it by!I. The subderivation
is particularly easy to complete. And we finish by executing the exit strategies as
planned.

SC4. For some P such that both P and �P lead to contradiction: Assume P

(�P ), obtain the first contradiction, and conclude �P (P ); then obtain the second
contradiction — this is the one you want.

given

a. A A (c, �I)

?

�A

use

a. A A (c, �I)

b. P A (c, �I)

c. ?

�P b-c �I

d. ?

�A a-d �I
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The essential point is that both P and �P somehow lead to contradiction. Thus the
assumption of one leads by�I or�E to the other; and since both lead to contradiction,
you end up with the contradiction you need. This is often a powerful way of making
progress when none seems possible by other means.

Let us try to show A$ B , B $ C , C $ �A
ǸD

K. Here is the derivation in
four stages.

(AO)

1. A$ B P
2. B $ C P
3. C $ �A P

4. �K A (c, �E)

?

K 4- �E

1. A$ B P
2. B $ C P
3. C $ �A P

4. �K A (c, �E)

5. A A (c, �I)

?

�A 5- �I

?

K 4- �E

Our strategy for the goal falls all the way through to SG5. So we assume the negation
of the goal, and go for a contradiction. In this case, there are no atomics or negated
atomics to be had. There is no disjunction under the scope of the negation, and no
formula is itself a negation such that we could reiterate and build up to the opposite.
But given formula A we can use$E to reach�A and so contradiction. And, similarly,
given �A we can use$E to reach A and so contradiction. So, following SC4, we
assume one of them to get the other.
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1. A$ B P
2. B $ C P
3. C $ �A P

4. �K A (c, �E)

5. A A (c, �I)

6. B 1,5$E
7. C 2,6$E
8. �A 3,7$E
9. ? 5,8 ?I

10. �A 5-9 �I

?

K 4- �E

1. A$ B P
2. B $ C P
3. C $ �A P

4. �K A (c, �E)

5. A A (c, �I)

6. B 1,5$E
7. C 2,6$E
8. �A 3,7$E
9. ? 5,8 ?I

10. �A 5-9 �I
11. C 3,10$E
12. B 2,11$E
13. A 1,12$E
14. ? 13,10 ?I

15. K 4-14 �E

The first contradiction appears easily at the level of atomics and negated atomics. This
gives us �A. And with �A, the second contradiction also comes easily, at the level
of atomics and negated atomics.

Though it can be useful, this strategy is often difficult to see. And there is no
obvious way to give a strategy for using the strategy! The best thing to say is that you
should look for it when the other strategies seem to fail.

Let us consider an extended example which combines some of the strategies. We
show that �A! B

ǸD
B _ A.

(AP)
1. �A! B P

B _ A

In this case, we do not see a contradiction in the premises; there is no formula with
main operator _ in the premises; and the goal does not appear in the premises. So we
might try going for the goal by _I in application of SG4. This would require getting
a B or an A. It is reasonable to go this way, but it turns out to be a dead end. (You
should convince yourself that this is so.) Thus we fall through to SG5.

1. �A! B P

2. �.B _ A/ A (c, �E)

?

B _ A 2- �E

Especially considering our goal has main opera-

tor _, set up to get the goal by �E.
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To get a contradiction, our first thought is to go for atomics and negated atomics. But
there is nothing to be done. Similarly, there is no formula with main operator _. So
we fall through to SC3 and continue as follows.

1. �A! B P

2. �.B _ A/ A (c, �E)

B _ A

? ,2 ?I

B _ A 2- �E

Given a negation that cannot be broken down,

set up to get the contradiction by building up to

the opposite.

It might seem that we have made no progress, since our new goal is no different than
the original! But there is progress insofar as we have a premise not available before
(more on this in a moment). At this stage, we can get the goal by _I. Either side will
work, but it is easier to start with the A. So we set up for that.

1. �A! B P

2. �.B _ A/ A (c, �E)

A

B _ A _I
? ,2 ?I

B _ A 2- �E

For a goal with main operator _, go for the goal

by _I

Now the goal is atomic. Again, there is no contradiction or formula with main operator
_ in the premises. The goal is not in the premises in any form we can hope to exploit.
And the goal has no main operator. So, again, we fall through to SG5.

1. �A! B P

2. �.B _ A/ A (c, �E)

3. �A A (c, �E)

?

A 3- �E
B _ A _I
? ,2 ?I

B _ A 2- �E

Especially for atomics, go for the goal by �E

Again, our first thought is to get atomics and negated atomics. We can get B from lines
(1) and (3) by!E. But that is all. So we will not get a contradiction from atomics
and negated atomics alone. There is no formula with main operator _. However, the
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possibility of getting a B suggests that we can build up to the opposite of line (2).
That is, we complete the subderivation as follows, and follow our exit strategies to
complete the whole.

1. �A! B P

2. �.B _ A/ A (c, �E)

3. �A A (c, �E)

4. B 1,3!E
5. B _ A 4 _I
6. ? 5,2 ?I

7. A 3-6 �E
8. B _ A 7 _I
9. ? 8,2 ?I

10. B _ A 2-9 �E

Get the contradiction by building up to the oppo-

site of an existing negation.

A couple of comments: First, observe that we build up to the opposite of �.B _ A/

twice, coming at it from different directions. First we obtain the left side B and
use _I to obtain the whole, then the right side A and use _I to obtain the whole.
This is typical with negated disjunctions. Second, note that this derivation might be
reconceived as an instance of SC4. �A gets us B , and so B _ A, which contradicts
�.B _ A/. But A gets us B _ A which, again, contradicts �.B _ A/. So both A and
�A lead to contradiction; so we assume one (�A), and get the first contradiction; this
gets us A, from which the second contradiction follows.

The general pattern of this derivation is typical for formulas with main operator _
in ND. For P _Q we may not be able to prove either P or Q from scratch — so that
the formula is not directly provable by _I. However, it may be indirectly provable. If
it is provable at all, it must be that the negation of one side forces the other. So it must
be possible to get the P or the Q under the additional assumption that the other is
false. This makes possible an argument of the following form.

(AQ)

a. �.P _Q/ A (c, �E

b. �P A (c, �E)

:::

c. Q

d. P _Q c _I
e. ? d,a ?I

f. P b-e �E
g. P _Q f _I
h. ? g,a ?I

i. P _Q a-h �E
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The “work” in this routine is getting from the negation of one side of the disjunction
to the other. Thus if from the assumption �P it is possible to derive Q, all the rest is
automatic! We have just seen an extended example (AP) of this pattern. It may be
seen as an application of SC3 or SC4 (or both). Where a disjunction may be provable
but not provable by _I, it will work by this method! So in difficult cases when the
goal is a disjunction, it is wise to think about whether you can get one side from the
negation of the other. If you can, set up as above. (And reconsider this method, when
we get to a simplified version in the extended system ND+).

This example was fairly difficult! You may see some longer, but you will not
see many harder. The strategies are not a cookbook for performing all derivations —
doing derivations remains an art. But the strategies will give you a good start, and
take you a long way through the exercises that follow. The theorems immediately
below again foreshadow rules of ND+.

*T6.21.
ǸD
�.A ^B/$ .�A _�B/

T6.22.
ǸD
�.A _B/$ .�A ^�B/

T6.23.
ǸD

.�A! B/$ .A _B/

T6.24.
ǸD

.A! B/$ .�A _B/

T6.25.
ǸD

ŒA ^ .B _ C/�$ Œ.A ^B/ _ .A ^ C/�

T6.26.
ǸD

ŒA _ .B ^ C/�$ Œ.A _B/ ^ .A _ C/�

T6.27.
ǸD

.A$ B/$ Œ.A! B/ ^ .B ! A/�

T6.28.
ǸD

.A$ B/$ Œ.A ^B/ _ .�A ^�B/�

T6.29.
ǸD

ŒA$ .B $ C/�$ Œ.A$ B/$ C �
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E6.17. Each of the following begins with a simple application of �I or �E for SG4
or SG5. Complete the derivations, and explain your use of strategies for a
contradiction. Hint: Each of the strategies for a contradiction is used at least
once.

*a. 1. A ^ B P
2. �.A ^ C / P

3. C A (c, �I)

?

�C

b. 1. .�B _�A/! D P
2. C ^�D P

3. �B A (c, �E)

?

B

c. 1. A ^ B P

2. �A _�B A (c, �I)

?

�.�A _�B/

d. 1. A$ �A P

2. B A (c, �I)

?

�B

e. 1. �.A! B/ P

2. �A A (c, �E)

?

A
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E6.18. Produce derivations to show each of the following. No worked out answers
are provided. However, if you get stuck, you will find strategy hints in the
back.

*a. A! �.B ^ C /, B ! C
ǸD

A! �B

*b.
ǸD
�.A! A/! A

*c. A _ B
ǸD
�.�A ^�B/

*d. �.A ^ B/, �.A ^�B/
ǸD
�A

*e.
ǸD

A _�A

*f.
ǸD

A _ .A! B/

*g. A _�B , �A _�B
ǸD
�B

*h. A$ .�B _ C /, B ! C
ǸD

A

*i. A$ B
ǸD

.C $ A/$ .C $ B/

*j. A$ �.B $ �C /, �.A _ B/
ǸD

C

*k. ŒC _ .A _ B/� ^ .C ! E/, A! D, D ! �A
ǸD

C _ B

*l. �.A! B/, �.B ! C /
ǸD
�D

*m. C ! �A, �.B ^ C /
ǸD

.A _ B/! �C

*n. �.A$ B/
ǸD
�A$ B

*o. A$ B , B $ �C
ǸD
�.A$ C /

*p. A _ B , �B _ C , �C
ǸD

A

*q. .�A _ C / _D, D ! �B
ǸD

.A ^ B/! C

*r. A _D, �D $ .E _ C /, .C ^ B/ _ ŒC ^ .F ! C /�
ǸD

A

*s. .A _ B/ _ .C ^D/; .A$ E/ ^ .B ! F /; G $ �.E _ F /; C ! B
ǸD
�G

*t. .A _ B/ ^�C , �C ! .D ^�A/, B ! .A _E/
ǸD

E _ F

*E6.19. Produce derivations to demonstrate each of T6.21 - T6.28. It turns out that
T6.29 is particularly challenging. Note that its demonstration (from left-to-
right) is left for E6.20e.
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E6.20. Produce derivations to show each of the following. These are particularly
challenging. If you can get them, you are doing very well! (In keeping with
the spirit of the challenge, no help is provided in the back of the book.)

a. .A _ B/! .A _ C /
ǸD

A _ .B ! C /

b. A! .B _ C /
ǸD

.A! B/ _ .A! C /

c. .A$ B/$ .C $ D/
ǸD

.A$ C /! .B ! D/

d. �.A$ B/, �.B $ C /, �.C $ A/
ǸD
�K

e. A$ .B $ C /
ǸD

.A$ B/$ C

E6.21. For each of the following, produce a good translation including interpretation
function. Then use a derivation to show that the argument is valid in ND. The
first two are suggested from the history of philosophy; the last is our familiar
case from p. 2.

a. We have knowledge about numbers.
If Platonism is true, then numbers are not in spacetime.
Either numbers are in spacetime, or we do not interact with them.
We have knowledge about numbers only if we interact with them.

Platonism is not true.

b. There is evil.
If god is good, then there is no evil unless he has morally sufficient reasons for
allowing it.
If god is both omnipotent and omniscient, then he does not have morally
sufficient reasons for allowing evil.

God is not good, omnipotent and omniscient.

c. If Bob goes to the fair, then so do Daniel and Edward. Albert goes to the fair
only if Bob or Carol go. If Daniel goes, then Edward goes only if Fred goes.
But not both Fred and Albert go. So Albert goes to the fair only if Carol goes
too.

d. If I think dogs fly, then I am insane or they have really big ears. But if dogs do
not have really big ears, then I am not insane. So either I do not think dogs fly,
or they have really big ears.
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e. If the maid did it, then it was done with a revolver only if it was done in the
parlor. But if the butler is innocent, then the maid did it unless it was done in
the parlor. The maid did it only if it was done with a revolver, while the butler
is guilty if it did happen in the parlor. So the butler is guilty.

E6.22. For each of the following concepts, explain in an essay of about two pages, so
that (high-school age) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples of your own construction (iii)
where the concept applies, and (iv) where it does not. Your essay should
exhibit an understanding of methods from the text.

a. Derivations as games, and the condition on rules.

b. Accessibility, and auxiliary assumptions.

c. The rules _I and _E.

d. The strategies for a goal.

e. The strategies for a contradiction.

6.3 Quantificational



Part II

Transition: Reasoning About
Logic
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Introductory

We have expended a great deal of energy learning to do logic. What we have learned
constitutes the complete classical predicate calculus with equality. This is a system of
tremendous power including for reasoning in foundations of arithmetic.

But our work itself raises questions. In chapter 4 we used truth trees and tables for
an account of the conditions under which sentential formulas are true and arguments
are valid. In the quantificational case, though, we were not able to use our graphical
methods for a general account of truth and validity — there were simply too many
branches, and too many interpretations, for a general account by means of trees. Thus
there is an open question about whether and how quantificational validity can be
shown.

And once we have introduced our notions of validity, many interesting questions
can be asked about how they work: are the arguments that are valid in AD the same as
the ones that are valid in ND? are the arguments that are valid in ND the same as the
ones that are quantificationally valid? Are the theorems of Q the same as the theorems
of PA? are theorems of PA the same as the truths on N the standard interpretation for
number theory? Is it possible for a computing device to identify the theorems of the
different logical systems?

It is one thing to ask such questions, and perhaps amazing that there are demon-
strable answers. We will come to that. However, in this short section we do not
attempt answers. Rather, we put ourselves in a position to think about answers by
introducing methods for thinking about logic. Thus this part looks both backward
and forward: By our methods we plug the hole left from chapter 4: in chapter 7 we
accomplish what could not be done with the tables and trees of chapter 4, and are able
to demonstrate quantificational validity. At the same time, we lay a foundation to ask
and answer core questions about logic.

Chapter 7 begins with our basic method of reasoning from definitions. Chapter ??
introduces mathematical induction. These methods are important not only for results,
but for their own sakes, as part of the “package” that comes with mathematical logic.
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Chapter 7

Direct Semantic Reasoning

It is the task of this chapter to think about reasoning directly from definitions. Fre-
quently, students who already reason quite skillfully with definitions flounder when
asked to do so explicitly, in the style of this chapter.1 Thus I propose to begin in
a restricted context — one with which we are already familiar, using a fairly rigid
framework as a guide. Perhaps you first learned to ride a bicycle with training wheels,
but eventually learned to ride without them, and so to go faster, and to places other
than the wheels would let you go. Similarly, in the end, we will want to apply our
methods beyond the restricted context in which we begin, working outside the initial
framework. But the framework should give us a good start. In this section, then, I
introduce the framework in the context of reasoning for specifically semantic notions,
and against the background of semantic reasoning we have already done.

In chapter 4 we used truth trees and tables for an account of the conditions under
which sentential formulas are true and arguments are valid. In the quantificational case,
though, we were not able to use our graphical methods for a general account of truth
and validity — there were simply too many branches, and too many interpretations, for
a general account by means of trees. For a complete account, we will need to reason
more directly from the definitions. But the tables and trees do exhibit the semantic
definitions. So we can build on what we have already done with them. Our goal will
be to move past the tables and trees, and learn to function without them. After some

1The ability to reason clearly and directly with definitions is important not only here, but also beyond.
In philosophy, compare the humorous, but also serious, verb to chisholm after Roderick Chisholm, who
was a master of the technique — where one proposes a definition; considers a counterexample; modifies
to account for the example; considers another counterexample; modifies again; and so forth. As, “He
started with definition (d.8) and kept chisholming away at it until he ended up with (d.800000000)” (The
Philosopher’s Lexicon). Such reasoning is impossible to understand apart from explicit attention to
consequences of definitions of the sort we have in mind.
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general remarks, we start with the sentential case, and move to the quantificational.

7.1 General

I begin with some considerations about what we are trying to accomplish, and how it
is related to what we have done. Consider the following row of a truth table, meant to
show that B ! C 6�

s
�B .

(A)
B C B ! C / �B

T T T T T F T

Since there is an interpretation on which the premise is true and the conclusion is not,
the argument is not sententially valid. Now, what justifies the move from IŒB� = T
and IŒC � = T, to the conclusion that B ! C is T? One might respond, “the truth
table.” But the truth table, T(!) is itself derived from definition ST(!). According
to ST(!), for sentences P and Q, I[.P ! Q/] = T iff I[P ] = F or I[Q] = T (or both).
In this case, IŒC � = T; so IŒB� = F or IŒC � = T; so the condition from ST(!) is met,
and IŒB ! C � = T. It may seem odd to move from IŒC � = T; to IŒB� = F or IŒC � = T,
when in fact IŒB� = T; but it is certainly correct — just as for _I in ND, the point is
merely to make explicit that, in virtue of the fact that IŒC � = T, the interpretation meets
the disjunctive condition from ST(!). And what justifies the move from IŒB� = T
to the conclusion that IŒ�B� = F? ST(�). According to ST(�), for any sentence P ,
I[�P ] = T iff I[P ] = F. In this case, IŒB� = T; and since IŒB� is not F, IŒ�B� is not
T; so IŒ�B� = F. Similarly, definition SV justifies the conclusion that the argument
is not sententially valid. According to SV, � �

s
P just in case there is no sentential

interpretation I such that IŒ�� = T but IŒP � = F. Since we have produced an I such that
IŒB ! C � = T but IŒ�B� = F, it follows that B ! C 6�

s
�B . So the definitions drive

the tables.
In chapter 4, we used tables to express these conditions. But we might have

reasoned directly.

(B)

Consider any interpretation I such that IŒB� = T and IŒC � = T. Since IŒC � = T, IŒB� = F

or IŒC � = T; so by ST(!), IŒB ! C � = T. But since IŒB� = T, by ST(�), IŒ�B� = F.
So there is a sentential interpretation I such that IŒB ! C � = T but IŒ�B� = F; so by
SV, B ! C 6�

s
�B .

Presumably, all this is “contained” in the one line of the truth table, when we use it to
conclude that the argument is not sententially valid.

Similarly, consider the following table, meant to show that ��A �
s
�A! A.
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(C)
A ��A / �A ! A

T T F T F T T T
F F T F T F F F

Since there is no row where the premise is true and the conclusion is false, the
argument is sententially valid. Again, ST(�) and ST(!) justify the way you build the
table. And SV lets you conclude that the argument is sententially valid. Since no row
makes the premise true and the conclusion false, and any sentential interpretation is
like some row in its assignment to A, no sentential interpretation makes the premise
true and conclusion false; so, by SV, the argument is sententially valid.

Thus the table represents reasoning as follows (omitting the second row). To
follow, notice how we simply reason through each “place” in a row, and then about
whether the row shows invalidity.

(D)

For any sentential interpretation I, either (i) IŒA� = T or (ii) IŒA� = F. Suppose (i); then
IŒA� = T; so by ST(�), IŒ�A� = F; so by ST(�) again, IŒ��A� = T. But IŒA� = T,
and by ST(�), IŒ�A� = F; from either of these it follows that IŒ�A� = F or IŒA� = T;
so by ST(!), IŒ�A ! A� = T. From this either IŒ��A� = F or IŒ�A ! A� = T;
so it is not the case that IŒ��A� = T and IŒ�A ! A� = F. Suppose (ii); then by
related reasoning. . . it is not the case that IŒ��A� = T and IŒ�A ! A� = F. So no
interpretation makes it the case that IŒ��A� = T and IŒ�A ! A� = F. So by SV,
��A �

s
�A! A.

Thus we might recapitulate reasoning in the table. Perhaps we typically “whip through”
tables without explicitly considering all the definitions involved. But the definitions
are involved when we complete the table.

Strictly, though, not all of this is necessary for the conclusion that the argument is
valid. Thus, for example, in the reasoning at (i), for the conditional there is no need to
establish that both IŒ�A� = F and that IŒA� = T. From either, it follows that IŒ�A� = F
or IŒA� = T; and so by ST(!) that IŒ�A! A� = T. So we might have omitted one or
the other. Similarly at (i) there is no need to make the point that IŒ��A� = T. What
matters is that IŒ�A ! A� = T, so that IŒ��A� = F or IŒ�A ! A� = T, and it is
therefore not the case that IŒ��A� = T and IŒ�A! A� = F. So reasoning for the full
table might be “shortcut” as follows.

(E)

For any sentential interpretation either (i) IŒA� = T or (ii) IŒA� = F. Suppose (i);
then IŒA� = T; so IŒ�A� = F or IŒA� = T; so by ST(!), IŒ�A ! A� = T. From this
either IŒ��A� = F or IŒ�A ! A� = T; so it is not the case that IŒ��A� = T and
IŒ�A ! A� = F. Suppose (ii); then IŒA� = F; so by ST(�), IŒ�A� = T; so by ST(�)
again, IŒ��A� = F; so either IŒ��A� = F or IŒ�A ! A� = T; so it is not the case
that IŒ��A� = T and IŒ�A ! A� = F. So no interpretation makes it the case that
IŒ��A� = T and IŒ�A! A� = F. So by SV, ��A �

s
�A! A.
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This is better. These shortcuts may reflect what you have already done when you
realize that, say, a true conclusion eliminates the need to think about the premises on
some row of a table. Though the shortcuts make things better, however, the idea of
reasoning in this way corresponding to a 4, 8 or more (!) row table remains painful.
But there is a way out.

Recall what happens when you apply the short truth-table method from chapter 4
to valid arguments. You start with the assumption that the premises are true and the
conclusion is not. If the argument is valid, you reach some conflict so that it is not,
in fact, possible to complete the row. Then, as we said on p. 75, you know “in your
heart” that the argument is valid. Let us turn this into an official argument form.

(F)

Suppose ��A 6�
s
�A ! A; then by SV, there is an I such that IŒ��A� = T and

IŒ�A ! A� = F. From the former, by ST(�), IŒ�A� = F. But from the latter, by
ST(!), IŒ�A� = T and IŒA� = F; and since IŒ�A� = T, IŒ�A� 6= F. This is impossible;
reject the assumption: ��A �

s
�A! A.

This is better still. The assumption that the argument is invalid leads to the conclusion
that for some I, IŒ�A� = T and IŒ�A� = F; but a formula is T just in case it is not F, so
this is impossible and we reject the assumption. The pattern is like �E in ND. This
approach is particularly important insofar as we do not reason individually about each
of the possible interpretations. This is nice in the sentential case, when there are too
many to reason about conveniently. And in the quantificational case, we will not be
able to argue individually about each of the possible interpretations. So we need to
avoid talking about interpretations one-by-one.

Thus we arrive at two strategies: To show that an argument is invalid, we produce
an interpretation, and show by the definitions that it makes the premises true and the
conclusion not. That is what we did in (B) above. To show that an argument is valid,
we assume the opposite, and show by the definitions that the assumption leads to
contradiction. Again, that is what we did just above, at (F).

Before we get to the details, let us consider an important point about what we are
trying to do: Our reasoning takes place in the metalanguage, based on the definitions
— where object-level expressions are uninterpreted apart from the definitions. To see
this, ask yourself whether a sentence P conflicts with P Í P . “Well,” you might
respond, “I have never encountered this symbol ‘Í’ before, so I am not in a position
to say.” But that is the point: whether P conflicts with P Í P depends entirely on
a definition for stroke ‘Í’. As it happens, this symbol is typically read “not-both” as
given by what might be a further clause of ST,

ST(Í) For any sentences P and Q, I[.P Í Q/] = T iff I[P ] = F or I[Q] = F (or both);
otherwise I[.P Í Q/] = F.
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The resultant table is,

T(Í)

P Q P Í Q

T T F
T F T
F T T
F F T

P Í Q is false when P and Q are both T, and otherwise true. Given this, P does
conflict with P Í P . Suppose IŒP � = T and IŒP Í P � = T; from the latter, by ST(Í),
IŒP � = F or IŒP � = F; either way, IŒP � = F; but this is impossible given our assumption
that IŒP � = T. In fact, P Í P has the same table as �P , and P Í .Q Í Q/ the same as
P ! Q.

(G)
P P Í P

T F
F T

P Q P Í .Q Í Q/

T T T F
T F F T
F T T F
F F T T

From this, we might have treated� and!, and so^, _ and$, all as abbreviations for
expressions whose only operator is Í. At best, however, this leaves official expressions
difficult to read. Here is the point that matters: Operators have their significance
entirely from the definitions. In this chapter, we make metalinguistic claims about
object expressions, where these can only be based on the definitions. P and P Í P
do not themselves conflict, apart from the definition which makes P with P Í P have
the consequence that IŒP � = T and IŒP � = F. And similarly for operators with which
we are more familiar. At every stage, it is the definitions which justify conclusions.

7.2 Sentential

With this much said, it remains possible to become confused about details while
working with the definitions. It is one thing to be able to follow such reasoning —
as I hope you have been able to do — and another to produce it. The idea now is to
make use of something at which we are already good, doing derivations, to further
structure and guide the way we proceed. The result will be a sort of derivation system
for reasoning about definitions. We build up this system in stages.

7.2.1 Truth

Let us begin with some notation. Where the script characters A; B; C ; D : : : repre-
sent object expressions in the usual way, let the Fraktur characters A; B; C; D : : :

represent metalinguistic expressions (‘A’ is the Fraktur ‘A’). Thus A might represent
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an expression of the sort IŒB� = T. Then) and, are the metalinguistic conditional
and biconditional respectively; :, M, O and ? represent metalinguistic negation, con-
junction, disjunction and contradiction. In practice, negation is indicated by the slash
(²) as well.

Now consider the following restatement of definition ST. Each clause is given in
both a positive and a negative form. For any sentences P and Q and interpretation I,

ST (�) IŒ�P � = T, IŒP � 6= T IŒ�P � 6= T, IŒP � = T

(!) IŒP ! Q� = T, IŒP � 6= T O IŒQ� = T IŒP ! Q� 6= T, IŒP � = T M IŒQ� 6= T

Given the new symbols, and that a sentence is F iff it is not true, this is a simple
restatement of ST. As we develop our formal system, we will treat the metalinguistic
biconditionals both as (replacement) rules and as axioms. Thus, for example, it will
be legitimate to move by ST(�) directly from IŒP � 6= T to IŒ�P � = T, moving from
right-to-left across the arrow. And similarly in the other direction. Alternatively, it will
be appropriate to assert by ST(�) the entire biconditional, that IŒ�P � = T, IŒP � 6= T.
For now, we will mostly use the biconditionals, in the first form, as rules.

To manipulate the definitions, we require some rules. These are like ones you
have seen before, only pitched at the metalinguistic level.

com A O B, B O A A M B, B M A

idm A, A O A A, A M A

dem :.A M B/, :A O :B :.A O B/, :A M :B

cnj A; B

A M B

A M B

A

A M B

B

dsj A

A O B

B

A O B

A O B;:A

B

A O B;:B

A

neg A, ::A A

?

:A

:A

?

A

bot A;:A

?

Each of these should remind you of rules from ND or ND+. In practice, we will
allow generalized versions of cnj that let us move directly from A1; A2 : : : An to
A1 M A2 M : : : M An. Similarly, we will allow applications of dsj and dem that skip
officially required applications of neg. Thus, for example, instead of going from
:A O B to :A O ::B and then by dem to :.A M :B/, we might move by dem
directly from :A O B to :.A M :B/. All this should become more clear as we
proceed.



CHAPTER 7. DIRECT SEMANTIC REASONING 187

With definition ST and these rules, we can begin to reason about consequences of
the definition. Suppose we want to show that an interpretation with IŒA� = IŒB� = T is
such that IŒ�.A! �B/� = T.

(H)

1. IŒA� = T prem
2. IŒB� = T prem
3. IŒ�B� 6= T 2 ST(�)
4. IŒA� = T M IŒ�B� 6= T 1,3 cnj
5. IŒA! �B� 6= T 4 ST(!)
6. IŒ�.A! �B/� = T 5 ST(�)

We are given that IŒA� = T and IŒB� = T.
From the latter, by ST(�), IŒ�B� 6= T; so
IŒA� = T and IŒ�B� 6= T; so by ST(!),
IŒA ! �B� 6= T; so by ST(�), IŒ�.A !

�B/� = T.

The reasoning on the left is a metalinguistic derivation in the sense that every step
is either a premise, or justified by a definition or rule. You should be able to follow
each step. On the right, we simply “tell the story” of the derivation — mirroring
it step-for-step. This latter style is the one we want to develop. As we shall see, it
gives us power to go beyond where the formalized derivations will take us. But the
derivations serve a purpose. If we can do them, we can use them to construct reasoning
of the sort we want. Each stage on one side corresponds to one on the other. So the
derivations can guide us as we construct our reasoning, and constrain the moves we
make. Note: First, on the right, we replace line references with language (“from the
latter”) meant to serve the same purpose. Second, the metalinguistic symbols,),,,
:, M, O are replaced with ordinary language on the right side. Finally, on the right,
though we cite every definition when we use it, we do not cite the additional rules
(in this case cnj). In general, as much as possible, you should strive to put the reader
(and yourself at a later time) in a position to follow your reasoning — supposing just
a basic familiarity with the definitions.

Consider now another example. Suppose we want to show that an interpretation
with IŒB� 6= T is such that IŒ�.A! �B/� 6= T.

(I)

1. IŒB� 6= T prem
2. IŒ�B� = T 1 ST(�)
3. IŒA� 6= T O IŒ�B� = T 2 dsj
4. IŒA! �B� = T 3 ST(!)
5. IŒ�.A! �B/� 6= T 4 ST(�)

We are given that IŒB� 6= T; so by ST(�),
IŒ�B� = T; so IŒA� 6= T or IŒ�B� = T; so
by ST(!), IŒA ! �B� = T; so by ST(�),
IŒ�.A! �B/� 6= T.

Observe that, for a true conditional, on its right-hand side ST(!) requires a disjunction
of the sort IŒP � 6= T O IŒB� = T. So we must obtain the disjunctive (3) in order to get
(4). ST(!) takes a conjunction IŒP � = T M IŒB� 6= T just when the conditional is false.
Do not get these cases confused, and think that somehow a conjunction of antecedent
and consequent yields a true arrow! Here is another derivation of the same result, this
time beginning with the opposite and breaking down to the parts, for an application of
neg.
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(J)

1. IŒ�.A! �B/� = T assp
2. IŒA! �B� 6= T 1 ST(�)
3. IŒA� = T M IŒ�B� 6= T 2 ST(!)
4. IŒ�B� 6= T 3 cnj
5. IŒB� = T 4 ST(�)
6. IŒB� 6= T prem
7. ? 5,6 bot
8. IŒ�.A! �B/� 6= T 1-7 neg

Suppose IŒ�.A ! �B/� = T; then from
ST(�), IŒA ! �B� 6= T; so by ST(!),
IŒA� = T and IŒ�B� 6= T; so IŒ�B� 6= T;
so by ST(�), IŒB� = T. But we are given
that IŒB� 6= T. This is impossible; reject the
assumption: IŒ�.A! �B/� 6= T.

This version takes a couple more lines. But it works as well, and provides a useful
illustration of the (neg) rule. As usual, reasonings on the one side mirror that on the
other. So we can use the formalized derivation as a guide for the reasoning on the
right. Again, we leave out the special metalinguistic symbols. And again we cite all
instances of definitions, but not the additional rules.

As you work the exercises that follow, to the extent that you can, it is good to
have one line depend on the one before or in the immediate neighborhood, so as to
minimize the need for extended references in the written versions. As you work these
and other problems, you may find the sentential metalinguistic reference on p. 197
helpful.

E7.1. Suppose IŒA� = T, IŒB� 6= T and IŒC � = T. For each of the following, produce
a formalized derivation, and then non-formalized reasoning to demonstrate
either that it is or is not true on I. Hint: You may find a quick row of the truth
table helpful to let you see which you want to show. Also, (e) is much easier
than it looks.

a. �B ! C

*b. �B ! �C

c. �Œ.A! �B/! �C �

d. �ŒA! .B ! �C /�

e. �A! Œ..A! B/! C /! �.�C ! B/�

7.2.2 Validity

So far, we have been able to reason about ST and truth. Let us now extend results
to validity. For this, we need to augment our formalized system. Let ‘S’ be a
metalinguistic existential quantifier — it asserts the existence of some object. For
now, ‘S ’ will appear only in contexts asserting the existence of interpretations. Thus,
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for example, S I.IŒP � = T/ says there is an interpretation I such that IŒP � = T, and
:S I.IŒP � = T/ says it is not the case that there is an interpretation I such that IŒP � = T.
Given this, we can state SV as follows, again in positive and negative forms.

SV :S I.IŒP1� = T M : : : M IŒPn� = T M IŒQ� 6= T/, P1 : : : Pn �s Q

S I.IŒP1� = T M : : : M IPn� = T M IŒQ� 6= T/, P1 : : : Pn 6�s Q

These should look familiar. An argument is valid when it is not the case that there is
some interpretation that makes the premises true and the conclusion not. An argument
is invalid if there is some interpretation that makes the premises true and the conclusion
not.

Again, we need rules to manipulate the new operator. In general, whenever a
metalinguistic term t first appears outside the scope of a metalinguistic quantifier, it is
labeled arbitrary or particular. For the sentential case, terms will always be of the
sort I, J. . . , for interpretations, and labeled ‘particular’ when they first appear apart
from the quantifier S . Say AŒt� is some metalinguistic expression in which term t

appears, and AŒu� is like AŒt� but with free instances of t replaced by u. Perhaps AŒt�

is IŒA� = T and AŒu� is JŒA� = T. Then,

exs AŒu� u arbitrary or particular

StAŒt�

StAŒt�

AŒu� u particular and new

As an instance of the left-hand “introduction” rule, we might move from JŒA� = T, for
a J labeled either arbitrary or particular, to S I.IŒA� = T/. If interpretation J is such
that JŒA� = T, then there is some interpretation I such that IŒA� = T. For the other
“exploitation” rule, we may move from S I.IŒA� = T/ to the result that JŒA� = T so long
as J is identified as particular and is new to the derivation, in the sense required for
9E in chapter 6. In particular, it must be that the term does not so-far appear outside
the scope of a metalinguistic quantifier, and does not appear free in the final result
of the derivation. Given that some I is such that IŒA� = T, we set up J as a particular
interpretation for which it is so.2

In addition, it will be helpful to allow a rule which lets us make assertions by
inspection about already given interpretations — and we will limit justifications by
(ins) just to assertions about interpretations (and, later, variable assignments). Thus,
for example, in the context of an interpretation I on which IŒA� = T, we might allow,

2Observe that, insofar as it is quantified, term I may itself be new in the sense that it does not so
far appear outside the scope of a quantifier. Thus we may be justified in moving from S I.IŒA� = T/ to
IŒA� = T, with I particular. However, as a matter of style, we will typically switch terms upon application
of the exs rule.
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n. IŒA� = T ins (I particular)

as a line of one of our derivations. In this case, I is a name of the interpretation, and
listed as particular on first use.

Now suppose we want to show that .B ! �D/, �B 6�
s

D. Recall that our
strategy for showing that an argument is invalid is to produce an interpretation,
and show that it makes the premises true and the conclusion not. So consider an
interpretation J such that JŒB� 6= T and JŒD� 6= T.

(K)

1. JŒB� 6= T ins (J particular)
2. JŒB� 6= T O JŒ�D� = T 1 dsj
3. JŒB ! �D� = T 2 ST(!)
4. JŒ�B� = T 1 ST(�)
5. JŒD� 6= T ins
6. JŒB ! �D� = T M JŒ�B� = T M JŒD� 6= T 3,4,5 cnj
7. S I.IŒB ! �D� = T M IŒ�B� = T M IŒD� 6= T/ 6 exs
8. B ! �D;�B 6�s D 7 SV

(1) and (5) are by inspection of the interpretation J, where an individual name is
always labeled “particular” when it first appears. At (6) we have a conclusion about
interpretation J, and at (7) we generalize to the existential, for an application of SV at
(8). Here is the corresponding informal reasoning.

JŒB� 6= T; so either JŒB� 6= T or JŒ�D� = T; so by ST(!), JŒB ! �D� = T. But since
JŒB� 6= T, by ST(�), JŒ�B� = T. And JŒD� 6= T. So JŒB ! �D� = T and JŒ�B� = T

but JŒD� 6= T. So there is an interpretation I such that IŒB ! �D� = T and IŒ�B� = T

but IŒD� 6= T. So by SV, .B ! �D/, �B 6�
s

D

It should be clear that this reasoning reflects that of the derivation. The derivation thus
constrains the steps we make, and guides us to our goal. We show the argument is
invalid by showing that there exists an interpretation on which the premises are true
and the conclusion is not.

Say we want to show that �.A ! B/ �
s

A. To show that an argument is
valid, our idea has been to assume otherwise, and show that the assumption leads to
contradiction. So we might reason as follows.
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(L)

1. �.A! B/ 6�s A assp
2. S I.IŒ�.A! B/� = T M IŒA� 6= T/ 1 SV
3. JŒ�.A! B/� = T M JŒA� 6= T 2 exs (J particular)
4. JŒ�.A! B/� = T 3 cnj
5. JŒA! B� 6= T 4 ST(�)
6. JŒA� = T M JŒB� 6= T 5 ST(!)
7. JŒA� = T 6 cnj
8. JŒA� 6= T 3 cnj
9. ? 7,8 bot

10. �.A! B/ �s A 1-9 neg

Suppose �.A! B/ 6�
s

A; then by SV there is some I such that IŒ�.A! B/� = T and
IŒA� 6= T. Let J be a particular interpretation of this sort; then JŒ�.A! B/� = T and
JŒA� 6= T. From the former, by ST(�), JŒA ! B� 6= T; so by ST(!), JŒA� = T and
JŒB� 6= T. So both JŒA� = T and JŒA� 6= T. This is impossible; reject the assumption:
�.A! B/ �

s
A.

At (2) we have the result that there is some interpretation on which the premise is true
and the conclusion is not. At (3), we set up to reason about a particular J for which
this is so. J does not so-far appear in the derivation, and does not appear in the goal at
(9). So we instantiate to it. This puts us in a position to reason by ST. The pattern is
typical. Given that the assumption leads to contradiction, we are justified in rejecting
the assumption, and thus conclude that the argument is valid. It is important that
we show the argument is valid, without reasoning individually about every possible
interpretation of the basic sentences!

Notice that we can also reason generally about forms. Here is a case of that sort.

T7.??s. �
s

.�Q! �P /! Œ.�Q! P /! Q�
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1. 6�s .�Q! �P /! ..�Q! P /! Q/ assp
2. S I.IŒ.�Q! �P /! ..�Q! P /! Q/� 6= T/ 1 SV
3. JŒ.�Q! �P /! ..�Q! P /! Q/� 6= T 2 exs (J particular)
4. JŒ�Q! �P � = T M JŒ.�Q! P /! Q� 6= T 3 ST(!)
5. JŒ.�Q! P /! Q� 6= T 4 cnj
6. JŒ�Q! P � = T M JŒQ� 6= T 5 ST(!)
7. JŒQ� 6= T 6 cnj
8. JŒ�Q� = T 7 SF(�)
9. JŒ�Q! P � = T 6 cnj

10. JŒ�Q� 6= T O JŒP � = T 9 ST(!)
11. JŒP � = T 8,10 dsj
12. JŒ�Q! �P � = T 4 cnj
13. JŒ�Q� 6= T O JŒ�P � = T 12 ST(!)
14. JŒ�P � = T 8,13 dsj
15. JŒP � 6= T 14 ST(�)
16. ? 11,15 bot
17. �s .�Q! �P /! ..�Q! P /! Q/ 1-16 neg

Suppose 6�
s

.�Q ! �P / ! ..�Q ! P / ! Q/; then by SV there is some I

such that IŒ.�Q ! �P / ! ..�Q ! P / ! Q/� 6= T. Let J be a particular
interpretation of this sort; then JŒ.�Q! �P /! ..�Q! P /! Q/� 6= T; so by
ST(!), JŒ�Q! �P � = T and JŒ.�Q! P /! Q� 6= T; from the latter, by ST(!),
JŒ�Q! P � = T and JŒQ� 6= T; from the latter of these, by ST(�), JŒ�Q� = T. Since
JŒ�Q ! P � = T, by ST(!), JŒ�Q� 6= T or JŒP � = T; but JŒ�Q� = T, so JŒP � = T.
Since JŒ�Q ! �P � = T, by ST(!), JŒ�Q� 6= T or JŒ�P � = T; but JŒ�Q� = T,
so JŒ�P � = T; so by ST(�), JŒP � 6= T. This is impossible; reject the assumption:
�

s
.�Q! �P /! ..�Q! P /! Q/.

Observe that the steps represented by (11) and (14) are not by cnj but by the dsj
rule with A O B and :A for the result that B.3 Observe also that contradictions
are obtained at the metalinguistic level. Thus JŒP � = T at (11) does not contradict
JŒ�P � = T at (14). Of course, it is a short step to the result that JŒP � = T and JŒP � 6= T
which do contradict. As a general point of strategy, it is much easier to manage a
negated conditional than an unnegated one — for the negated conditional yields a
conjunctive result, and the unnegated a disjunctive. Thus we begin above with the
negated conditionals, and use the results to set up applications of dsj. This is typical.
Similarly we can show,

T7.??s. P , P ! Q �
s

Q

3Or, rather, we have :A O B and A — and thus skip application of neg to obtain the proper ::A

for this application of dsj.
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T7.??s. �
s

P ! .Q! P /

T7.??s. �
s

.O ! .P ! Q//! ..O ! P /! .O ! Q//

T7.??s - T7.??s should remind you of the axioms and rule for the sentential part of
AD from chapter 3. These results (or, rather, analogues for the quantificational case)
play an important role for things to come.

These derivations are structurally much simpler than ones you have seen before
from ND. The challenge is accommodating new notation with the different mix of
rules. Again, to show that an argument is invalid, produce an interpretation; then
use it for a demonstration that there exists an interpretation that makes premises true
and the conclusion not. To show that an argument is valid, suppose otherwise; then
demonstrate that your assumption leads to contradiction. The derivations then provide
the pattern for your informal reasoning.

E7.2. Produce a formalized derivation, and then informal reasoning to demonstrate
each of the following. To show invalidity, you will have to produce an inter-
pretation to which your argument refers.

*a. A! B , �A 6�
s
�B

*b. A! B , �B �
s
�A

c. A! B , B ! C , C ! D �
s

A! D

d. A! B , B ! �A �
s
�A

e. A! B , �A! �B 6�
s
�.A! �B/

f. .�A! B/! A �
s
�A! �B

g. �A! �B , B �
s
�.B ! �A/

h. A! B , �B ! A 6�
s

A! �B

i. 6�
s

Œ.A! B/! .A! C /�! Œ.A! B/! C �

j. �
s

.A! B/! Œ.B ! �C /! .C ! �A/�

E7.3. Provide demonstrations for T7.??s - T7.??s in the informal style. Hint: you
may or may not find that truth tables, or formalized derivations, would be
helpful as a guide.



CHAPTER 7. DIRECT SEMANTIC REASONING 194

7.2.3 Derived Rules

Finally, for this section on sentential forms, we expand the range of our results by
means of some rules for) and,.

cnd A) B, A

B

A

B

A) B

A) B, B) C

A) C

bcnd A, B, A

B

A, B, B

A

A) B; B) A

A, B

A, B, B, C

A, C

We will also allow versions of bcnd which move from, say, A, B and :A, to :B

(like NB from ND+). And we will allow generalized versions of these rules moving
directly from, say, A) B, B) C, and C) D to A) D; and similarly, from
A , B, B , C, and C , D to A , D. In this last case, the natural informal
description is, A iff B; B iff C; C iff D; so A iff D. In real cases, however, repetition
of terms can be awkward and get in the way of reading. In practice, then, the pattern
collapses to, A iff B; iff C; iff D; so A iff D — where this is understood as in the
official version.

Also, when demonstrating that A) B, in many cases, it is helpful to get B by
neg; officially, the pattern is as on the left,

A

:B

?

B

A) B

But the result is automatic
once we derive a contra-
diction from A and :B;
so, in practice, this pattern
collapses into:

A M :B

?

A) B

So to demonstrate a conditional, it is enough to derive a contradiction from the an-
tecedent and negation of the consequent. Let us also include among our definitions,
(abv) for unpacking abbreviations. This is to be understood as justifying any bicondi-
tional A, A0 where A0 abbreviates A. Such a biconditional can be used as either an
axiom or a rule.

We are now in a position to produce derived clauses for ST. In table form, we
have already seen derived forms for ST from chapter 4. But we did not then have the
official means to extend the definition.

ST0 (^) IŒP ^Q� = T, IŒP � = T M IŒQ� = T

IŒP ^Q� 6= T, IŒP � 6= T O IŒQ� 6= T
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(_) IŒP _Q� = T, IŒP � = T O IŒQ� = T

IŒP _Q� 6= T, IŒP � 6= T M IŒQ� 6= T

($) IŒP $ Q� = T, .IŒP � = T M IŒQ� = T/ O .IŒP � 6= T M IŒQ� 6= T/

IŒP $ Q� 6= T, .IŒP � = T M IŒQ� 6= T/ O .IŒP � 6= T M IŒQ� = T/

Again, you should recognize the derived clauses based on what you already know
from truth tables.

First, consider the positive form for ST0(^). We reason about the arbitrary inter-
pretation. The demonstration begins by abv, and strings together biconditionals to
reach the final result.

(M)

1. IŒP ^Q� = T, IŒ�.P ! �Q/� = T abv (I arbitrary)
2. IŒ�.P ! �Q/� = T, IŒP ! �Q� 6= T ST(�)
3. IŒP ! �Q� 6= T, IŒP � = T M IŒ�Q� 6= T ST(!)
4. IŒP � = T M IŒ�Q� 6= T, IŒP � = T M IŒQ� = T ST(�)
5. IŒP ^Q� = T, IŒP � = T M IŒQ� = T 1,2,3,4 bcnd

This derivation puts together a string of biconditionals of the form A , B, B ,

C, C , D, D , E; the conclusion follows by bcnd. Notice that we use the
abbreviation and first two definitions as axioms, to state the biconditonals. Technically,
(4) results from an implicit IŒP � = T M IŒ�Q� 6= T , IŒP � = T M IŒ�Q� 6= T with
ST(�) as a replacement rule, substituting IŒQ� = T for IŒ�Q� 6= T on the right-hand
side. In the “collapsed” biconditional form, the result is as follows.

By abv, IŒP ^ Q� = T iff IŒ�.P ! �Q/� = T; by ST(�), iff IŒP ! �Q� 6= T;
by ST(!), iff IŒP � = T and IŒ�Q� 6= T; by ST(�), iff IŒP � = T and IŒQ� = T. So
IŒP ^Q� = T iff IŒP � = T and IŒQ� = T.

In this abbreviated form, each stage implies the next from start to finish. But similarly,
each stage implies the one before from finish to start. So one might think of it as
demonstrating conditionals in both directions all at once for eventual application
of bcnd. Because we have just shown a biconditional, it follows immediately that
IŒP ^Q� 6= T just in case the right hand side fails — just in case one of IŒP � 6= T or
IŒQ� 6= T. However, we can also make the point directly.

By abv, IŒP ^ Q� 6= T iff IŒ�.P ! �Q/� 6= T; by ST(�), iff IŒP ! �Q� = T; by
ST(!), iff IŒP � 6= T or IŒ�Q� = T; by ST(�), iff IŒP � 6= T or IŒQ� 6= T. So IŒP ^Q� 6= T

iff IŒP � 6= T or IŒQ� 6= T.

Reasoning for ST0(_) is similar. For ST0($) it will be helpful to introduce, as a
derived rule, a sort of distribution principle.
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dst Œ.:A O B/ M .:B O A/�, Œ.A M B/ O .:A M :B/�

To show this, our basic idea will be to obtain the conditional going in both directions,
and then apply bcnd. Here is the argument from left-to-right.

1. Œ.:A O B/ M .:B O A/� M :Œ.A M B/ O .:A M :B/� assp
2. :Œ.A M B/ O .:A M :B/� 1 cnj
3. .:A O B/ M .:B O A/ 1 cnj
4. :A O B 3 cnj
5. :B O A 3 cnj
6. :.A M B/ M :.:A M :B/ 2 dem
7. :.A M B/ 6 cnj
8. :.:A M :B/ 6 cnj
9. :A O :B 7 dem

10. A O B 8 dem
11. A assp
12. B 4,11 dsj
13. :B 9,11 dsj
14. ? 10,11 bot
15. :A 11-14 neg
16. :B 5,15 dsj
17. B 10,15 dsj
18. ? 16,17 bot
19. Œ.:A O B/ M .:B O A/�) Œ.A M B/ O .:A M :B/� 1-18 cnd

The conditional is demonstrated in the “collapsed” form, where we assume the
antecedent with the negation of the consequent, and go for a contradiction. Note
the little subderivation at (11) - (14); we have accumulated disjunctions at (4), (5),
(9) and (10), but do not have any of the “sides”; often the way to make headway
is to assume the negation of one side; this can feed into dsj and neg (the idea is
related to SC4). Demonstration of the conditional in the other direction is left as an
exercise. Given dst, you should be able to demonstrate ST($), also in the collapsed
biconditional style. You will begin by observing by abv that IŒP $ Q� = T iff
IŒ�..P ! Q/ ! �.Q ! P //� = T; by neg iff . . . . The negative side is relatively
straightforward, and does not require dst.

Having established the derived clauses for ST0, we can use them directly in our
reasoning. Thus, for example, let us show that B _ .A ^ �C /, .C ! A/ $ B 6�

s

�.A ^ C /. For this, consider an interpretation J such that JŒA� = JŒB� = JŒC � = T.
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Metalinguistic Quick Reference (sentential)
DEFINITIONS:

ST (�) IŒ�P � = T, IŒP � 6= T IŒ�P � 6= T, IŒP � = T

(!) IŒP ! Q� = T, IŒP � 6= T O IŒQ� = T IŒP ! Q� 6= T, IŒP � = T M IŒQ� 6= T

(Í) IŒP Í Q� = T, IŒP � 6= T O IŒQ� 6= T IŒP Í Q� 6= T, IŒP � = T M IŒQ� = T

ST0 (^) IŒP ^Q� = T, IŒP � = T M IŒQ� = T

IŒP ^Q� 6= T, IŒP � 6= T O IŒQ� 6= T.

(_) IŒP _Q� = T, IŒP � = T O IŒQ� = T

IŒP _Q� 6= T, IŒP � 6= T M IŒQ� 6= T.

($) IŒP $ Q� = T, .IŒP � = T M IŒQ� = T/ O .IŒP � 6= T M IŒQ� 6= T/

IŒP $ Q� 6= T, .IŒP � = T M IŒQ� 6= T/ O .IŒP � 6= T M IŒQ� = T/.

SV :S I.IŒP1� = T M : : : M IŒPn� = T M IŒQ� 6= T/, P1 : : : Pn �s Q

S I.IŒP1� = T M : : : M IPn� = T M IŒQ� 6= T/, P1 : : : Pn 6�s Q

abv Abbreviation allows A, A0 where A0 abbreviates A.

RULES:

com A O B, B O A A M B, B M A

idm A, A O A A, A M A

dem :.A M B/, :A O :B :.A O B/, :A M :B

cnj A; B

A M B

A M B

A

A M B

B

dsj A

A O B

B

A O B

A O B;:A

B

A O B;:B

A

neg A, ::A A

?

:A

:A

?

A

bot A;:A

?

exs AŒu� u arbitrary or particular

StAŒt�

StAŒt�

AŒu� u particular and new

cnd A) B, A

B

A

B

A) B

A) B, B) C

A) C

A M :B

?

A) B

bcnd A, B, A

B

A, B, B

A

A) B; B) A

A, B

A, B, B, C

A, C

dst Œ.:A O B/ M .:B O A/�, Œ.A M B/ O .:A M :B/�

ins Inspection allows assertions about interpretations and variable assignments.
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(N)

1. JŒA� = T ins (J particular)
2. JŒC � = T ins
3. JŒA� = T M JŒC � = T 1,2 cnj
4. JŒA ^ C � = T 3 ST0(^)
5. JŒ�.A ^ C /� 6= T 4 ST(�)
6. JŒB� = T ins
7. JŒB� = T O JŒA ^�C � = T 6 dsj
8. JŒB _ .A ^�C /� = T 7 ST0(_)
9. JŒC � 6= T O JŒA� = T 1, dsj

10. JŒC ! A� = T 9 ST(!)
11. JŒC ! A� = T M JŒB� = T 10,6 cnj
12. .JŒC ! A� = T M JŒB� = T/ O .JŒC ! A� 6= T M JŒB� 6= T/ 11 dsj
13. JŒ.C ! A/$ B� = T 12, ST0($)
14. JŒB _ .A ^�C /� = T M JŒ.C ! A/$ B� = T M JŒ�.A ^ C /� 6= T 8,13,5 cnj
15. S IŒIŒB _ .A ^�C /� = T M IŒ.C ! A/$ B� = T M IŒ�.A ^ C /� 6= T� 14 exs
16. B _ .A ^�C /; .C ! A/$ B 6�s �.A ^ C / 15 SV

Since JŒA� = T and JŒC � = T, by ST0(^), JŒA ^ C � = T; so by ST(�), JŒ�.A ^ C /� 6= T.
Since JŒB� = T, either JŒB� = T or JŒA^�C � = T; so by ST0(_), JŒB _ .A^�C /� = T.
Since JŒA� = T, either JŒC � 6= T or JŒA� = T; so by ST(!), JŒC ! A� = T; so
both JŒC ! A� = T and JŒB� = T; so either both JŒC ! A� = T and JŒB� = T

or both JŒC ! A� 6= T and JŒB� 6= T; so by ST0($), JŒ.C ! A/ $ B� = T. So
JŒB _ .A ^ �C /� = T and JŒ.C ! A/ $ B� = T but JŒ�.A ^ C /� 6= T; so there
exists an interpretation I such that IŒB _ .A ^�C /� = T and IŒ.C ! A/$ B� = T but
IŒ�.A ^ C /� 6= T; so by SV, B _ .A ^�C /, .C ! A/$ B 6�

s
�.A ^ C /.

Similarly we can show that A! .B _ C /, C $ B , �C �
s
�A. As usual, our

strategy is to assume otherwise, and go for contradiction.



CHAPTER 7. DIRECT SEMANTIC REASONING 199

(O)

1. A! .B _ C /; C $ B;�C 6�s �A assp
2. S I.IŒA! .B _ C /� = T M IŒC $ B� = T M IŒ�C � = T M IŒ�A� 6= T/ 1 SV
3. JŒA! .B _ C /� = T M JŒC $ B� = T M JŒ�C � = T M JŒ�A� 6= T 2 exs (J particular)
4. JŒ�C � = T 3 cnj
5. JŒC � 6= T 4 ST(�)
6. JŒC � 6= T O JŒB� 6= T 5 dsj
7. :.JŒC � = T M JŒB� = T/ 6 dem
8. JŒC $ B� = T 3 cnj
9. .JŒC � = T M JŒB� = T/ O .JŒC � 6= T M JŒB� 6= T/ 8 ST0($)

10. JŒC � 6= T M JŒB� 6= T 9,7 dsj
11. :.JŒC � = T O JŒB� = T/ 10 dem
12. JŒ�A� 6= T 3 cnj
13. JŒA� = T 12 ST(�)
14. JŒA! .B _ C /� = T 3 cnj
15. JŒA� 6= T O JŒB _ C � = T 14 ST(!)
16. JŒB _ C � = T 13,15 dsj
17. JŒB� = T O JŒC � = T 16 ST0(_)
18. JŒC � = T O JŒB� = T 17 com
19. ? 11,18 bot
20. A! .B _ C /; C $ B;�C �s �A 1-19 neg

Suppose A ! .B _ C /, C $ B , �C 6�
s
�A; then by SV there is some I such that

IŒA ! .B _ C /� = T, and IŒC $ B� = T, and IŒ�C � = T, but IŒ�A� 6= T. Let J be a
particular interpretation of this sort; then JŒA! .B _C /� = T, and JŒC $ B� = T, and
JŒ�C � = T, but JŒ�A� 6= T. Since JŒ�C � = T, by ST(�), JŒC � 6= T; so either JŒC � 6= T

or JŒB� 6= T; so it is not the case that both JŒC � = T and JŒB� = T. But JŒC $ B� = T;
so by ST0($), both JŒC � = T and JŒB� = T, or both JŒC � 6= T and JŒB� 6= T; but not
the former, so JŒC � 6= T and JŒB� 6= T; so it is not the case that either JŒC � = T or
JŒB� = T. JŒ�A� 6= T; so by ST(�), JŒA� = T. But JŒA! .B _ C /� = T; so by ST(!),
JŒA� 6= T or JŒB _ C � = T; but JŒA� = T; so JŒB _ C � = T; so by ST0(_), JŒB� = T or
JŒC � = T; so either JŒC � = T or JŒB� = T. But this is impossible; reject the assumption:
A! .B _ C /, C $ B , �C 6�

s
�A.

Though the formalized derivations are useful to discipline the way we reason, in
the end, you may find the written versions to be both quicker, and easier to follow.
As you work the exercises, try to free yourself from the formalized derivations to
work the informal versions independently — though you should continue to use the
formalized versions as a check for your work.
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*E7.4. Complete the demonstration of derived clauses of ST0 by completing the
demonstration for dst from right-to-left, and providing non-formalized reason-
ings for both the positive and negative parts of ST0(_) and ST0($).

E7.5. In the non-formalized style, show the following semantic principles for$.

*a. Coms: IŒA$ B� = T iff IŒB $ A� = T.

b. Assocs: IŒA$ .B $ C/� = T iff IŒ.A$ B/$ C � = T.

c. Subs: If IŒA� = T iff IŒB� = T, then IŒA$ C � = T iff IŒB $ C � = T.

E7.6. Using ST(Í) as above on p. 184, produce non-formalized reasonings to show
each of the following. Again, you may or may not find formalized derivations
helpful — but your reasoning should be no less clean than that guided by the
rules. Hint, by ST(Í), IŒP Í Q� 6= T iff IŒP � = T and IŒQ� = T.

a. IŒP Í P � = T iff IŒ�P � = T

*b. IŒP Í .Q Í Q/� = T iff IŒP ! Q� = T

c. IŒ.P Í P / Í .Q Í Q/� = T iff IŒP _Q� = T

d. IŒ.P Í Q/ Í .P Í Q/� = T iff IŒP ^Q� = T

E7.7. Produce non-formalized reasoning to demonstrate each of the following.

a. A! .B ^ C /, C $ B , �C �
s
�A

*b. �.A$ B/, �A, �B �
s

C ^�C

*c. �.�A ^�B/ 6�
s

A ^ B

d. ��A! ��B , �B ! �A 6�
s

B ! A

e. A ^ .B ! C / 6�
s

.A ^ C / _ .A ^ B/

f. Œ.C _D/ ^ B�! A, D �
s

B ! A

g. �
s

ŒA _ ..C ! �B/ ^�A/� _�A

h. D ! .A! B/, �A! �D, C ^D �
s

B

i. .�A _ B/! .C ^D/, �.�A _ B/ 6�
s
�.C ^D/

j. A ^ .B _ C /, .�C _D/ ^ .D ! �D/ �
s

A ^ B
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7.3 Quantificational
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Chapter One

E1.1. Say whether each of the following stories is internally consistent or inconsistent.
In either case, explain why.

a. Smoking cigarettes greatly increases the risk of lung cancer, although most
people who smoke cigarettes do not get lung cancer.

Consistent. Even though the risk of cancer goes up with smoking, it may be that
most people who smoke do not have cancer. Perhaps 49% of people who smoke
get cancer, and 1% of people who do not smoke get cancer. Then smoking
greatly increases the risk, even though most people who smoke do not get it.

c. Abortion is always morally wrong, though abortion is morally right in order to
save a woman’s life.

Inconsistent. Suppose (whether you agree or not) that abortion is always morally
wrong. Then abortion is wrong even in the case when it would save a woman’s
life. So the story requires that abortion is and is not wrong.

e. No rabbits are nearsighted, though some rabbits wear glasses.

Consistent. One reason for wearing glasses is to correct nearsightedness. But
glasses may be worn for other reasons. It might be that rabbits who wear glasses
are farsighted, or have astigmatism, or think that glasses are stylish. Or maybe
they wear sunglasses just to look cool.

g. Barack Obama was never president of the United States, although Michelle is
president right now.

Consistent. Do not get confused by the facts! In a story it may be that Barack
was never president and his wife was. Thus this story does not contradict itself
and is consistent.

i. The death star is a weapon more powerful than that in any galaxy, though there
is, in a galaxy far, far away, a weapon more powerful than it.

Inconsistent. If the death star is more powerful than any weapon in any galaxy,
then according to this story it is and is not more powerful than the weapon in
the galaxy far far away.

E1.2. For each of the following sentences, (i) say whether it is true or false in the
real world and then (ii) say, if you can, whether it is true or false according to
the accompanying story. In each case, explain your answers.

Exercise 1.2
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c. Sentence: After overrunning Phoenix in early 2006, a herd of buffalo overran
Newark, New Jersey.

Story: A thundering herd of buffalo overran Phoenix, Arizona in early 2006.
The city no longer exists.

(i) It is false in the real world that any herd of buffalo overran Newark anytime
after 2006. (ii) And, though the story says something about Phoenix, the story
does not contain enough information to say whether the sentence regarding
Newark is true or false.

e. Sentence: Jack Nicholson has swum the Atlantic.

Story: No human being has swum the Atlantic. Jack Nicholson and Bill Clinton
and you are all human beings, and at least one of you swam all the way across!

(i) It is false in the real world that Jack Nicholson has swum the Atlantic. (ii)
This story is inconsistent! It requires that some human both has and has not
swum the Atlantic. Thus we refuse to say that it makes the sentence true or
false.

g. Sentence: Your instructor is not a human being.

Story: No beings from other planets have ever made it to this country. However,
your instructor made it to this country from another planet.

(i) Presumably, the claim that your instructor is not a human being is false in
the real world (assuming that you are not working by independent, or computer-
aided study). (ii) But this story is inconsistent! It says both that no beings from
other planets have made it to this country and that some being has. Thus we
refuse to say that it makes any sentence true or false.

i. Sentence: The Yugo is the most expensive car in the world.

Story: Jaguar and Rolls Royce are expensive cars. But the Yugo is more
expensive than either of them.

(i) The Yugo is a famously cheap automobile. So the sentence is false in the
real world. (ii) According to the story, the Yugo is more expensive than some
expensive cars. But this is not enough information to say whether it is the most
expensive car in the world. So there is not enough information to say whether
the sentence is true or false.

E1.3. Use our invalidity test to show that each of the following arguments is not
logically valid, and so not logically sound.

Exercise 1.3
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*For each of these problems, different stories might do the job.

a. If Joe works hard, then he will get an ‘A’
Joe will get an ‘A’

Joe works hard

a. In any story with premises true and conclusion false,

1. If Joe works hard, then he will get an ‘A’
2. Joe will get an ‘A’
3. Joe does not work hard

b. Story: Joe is very smart, and if he works hard, then he will get an ‘A’. Joe
will get an ‘A’; however, Joe cheats and gets the ‘A’ without working hard.

c. This is a consistent story that makes the premises true and the conclusion
false; thus, by definition, the argument is not logically valid.

d. Since the argument is not logically valid, by definition, it is not logically
sound.

E1.4. Use our validity procedure to show that each of the following is logically valid,
and decide (if you can) whether it is logically sound.

*For each of these problems, particular reasonings might take different forms.

a. If Bill is president, then Hillary is first lady
Hillary is not first lady

Bill is not president

a. In any story with premises true and conclusion false,

1. If Bill is president, then Hillary is first lady
2. Hillary is not first lady
3. Bill is president

b. In any such story,

Given (1) and (3),
4. Hillary is first lady
Given (2) and (4),
5. Hillary is and is not first lady

Exercise 1.4.a
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c. So no story with the premises true and conclusion false is a consistent
story; so by definition, the argument is logically valid.

d. In the real world Hillary is not first lady and Bill and Hillary are married
so it is true that if Bill is president, then Hillary is first lady; so all the
premises are true and by definition the argument is logically sound.

E1.5. Use our procedures to say whether the following are logically valid or invalid,
and sound or unsound. Hint: You may have to do some experimenting to decide
whether the arguments are logically valid or invalid — and so decide which
procedure applies.

c. Some dogs have red hair
Some dogs have long hair

Some dogs have long, red hair

a. In any story with the premise true and conclusion false,
1. Some dogs have red hair
2. Some dogs have long hair
3. No dogs have long, red hair

b. Story: There are dogs with red hair, and there are dogs with long hair.
However, due to a genetic defect, no dogs have long, red hair.

c. This is a consistent story that makes the premise true and the conclusion
false; thus, by definition, the argument is not logically valid.

d. Since the argument is not logically valid, by definition, it is not logically
sound.

E1.6. Use our procedures to say whether the following are logically valid or invalid,
and sound or unsound.

d. Cheerios are square
Chex are round

There is no round square

a. In any story with the premises true and conclusion false,
1. Cheerios are square
2. Chex are round
3. There is a round square
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b. In any such story, given (3),

4. Something is round and not round

c. So no story with the premises true and conclusion false is a consistent
story; so by definition, the argument is logically valid.

d. In the real world Cheerios are not square and Chex are not round, so the
premises are not true; so though the argument is valid, by definition it is
not logically sound.

E1.8. Which of the following are true, and which are false? In each case, explain
your answers, with reference to the relevant definitions.

c. If the conclusion of an argument is true in the real world, then the argument
must be logically valid.

False. An argument is logically valid iff there is no consistent story that makes
the premises true and the conclusion false. Though the conclusion is true in the
real world (and so in the real story), there may be some other story that makes
the premises true and the conclusion false. If this is so, then the argument is not
logically valid.

e. If a premise of an argument is false in the real world, then the argument cannot
be logically valid.

False. An argument is logically valid iff there is no consistent story that makes
the premises true and the conclusion false. For logical validity, there is no
requirement that every story have true premises — only that ones that do, also
have true conclusions. So an argument might be logically valid, and have
premises that are false in many stories, including the real story.

g. If an argument is logically sound, then its conclusion is true in the real world.

True. An argument is logically valid iff there is no consistent story that makes
the premises true and the conclusion false. An argument is logically sound iff it
is logically valid and its premises are true in the real world. Since the premises
are true in the real world, they hold in the real story; since the argument is valid,
this story cannot be one where the conclusion is false. So the conclusion of a
sound argument is true in the real world.

i. If the conclusion of an argument cannot be false (is false in no consistent story),
then the argument is logically valid.
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True. If there is no consistent story where the conclusion is false, then there is
no consistent story where the premises are true and the conclusion is false; but
an argument is logically valid iff there is no consistent story where the premises
are true and the conclusion is false. So the argument is logically valid.

Chapter Two

E2.1. Assuming that S may represent any sentence letter, and P any arbitrary expres-
sion of Ls, use maps to determine whether each of the following expressions is
(i) of the form .S ! �P / and then (ii) whether it is of the form .P ! �P /.
In each case, explain your answers.

e. ..! �/! �.! �//

.

‹‚…„ƒ
.! �/! �

‚…„ƒ
.! �/ /

.S ! �P /

??@@R
HHHj

.
‚…„ƒ
.! �/! �

‚…„ƒ
.! �/ /

.P ! �P /

??@@R
HHHj��/

����

(i) Since .! �/ is not a sentence letter, there is nothing to which S maps, and
..! �/! �.! �// is not of the form .S ! �P /. (ii) Since P maps to any
expression, ..! �/! �.! �// is of the form .P ! �P / by the above map.

E2.3. For each of the following expressions, demonstrate that it is a formula and
a sentence of Ls with a tree. Then on the tree (i) bracket all the subformulas,
(ii) box the immediate subformula(s), (iii) star the atomic subformulas, and (iv)
circle the main operator.

a. A

subformula: [ A? This is a formula by FR(s)

In this case, the “tree” is very simple. There are no operators, and so no main
operator. There are no immediate subformulas.

E2.4. Explain why the following expressions are not formulas or sentences of Ls.
Hint: you may find that an attempted tree will help you see what is wrong.

b. .P ! Q/

This is not a formula because P and Q are not sentence letters of Ls. They
are part of the metalanguage by which we describe Ls, but are not among the
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Roman italics (with or without subscripts) that are the sentence letters. Since it
is not a formula, it is not a sentence.

E2.5. For each of the following expressions, determine whether it is a formula and
sentence of Ls. If it is, show it on a tree, and exhibit its parts as in E2.3. If it is
not, explain why as in E2.4.

a. �..A! B/! .�.A! B/! A//

This is a formula and a sentence.
A?

@
@
@

B?

�
�
�

A?

@
@
@

B?

�
�
�

A?

�
�
�
�
�
�
�
�
�
��

By FR(s)

.A! B/

S
S
S
S
S
S
S
S
S
SS

.A! B/ By FR(!)

�.A! B/
HH

HHHH

By FR(�)

.�.A! B/! A/
��������

By FR(!)

..A! B/! .�.A! B/! A// By FR(!)

�
 �	� ..A! B/! .�.A! B/! A// By FR(�)

�




s
u
b
f
o
r
m
u
l
a
s

c. �.A! B/! .�.A! B/! A/

A

@
@
@

B

�
�
�

A

@
@
@

B

�
�
�

A

�
�
�
�
�
�
�
�
�
��

By FR(s)

.A! B/ .A! B/ By FR(!)

�.A! B/

l
l
l
l
l
l
l
l

�.A! B/
H
HHH

HH

By FR(�)

.�.A! B/! A/
��������

By FR(!)

�.A! B/! .�.A! B/! A/ Mistake!
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Not a formula or sentence. The attempt to apply FR(!) at the last step fails,
insofar as the outer parentheses are missing.

E2.6. For each of the following expressions, demonstrate that it is a formula and
a sentence of Ls with a tree. Then on the tree (i) bracket all the subformulas,
(ii) box the immediate subformula(s), (iii) star the atomic subformulas, and (iv)
circle the main operator.

a. .A ^ B/! C

A?

@
@
@

B?

�
�
�

C ?

�
�
�
�
�
��

Formulas by FR(s)

.A ^ B/

@
@
@

Formula by FR0(^)

.A ^ B/
�
 �	! C Formula by FR(!), outer parentheses dropped

�




s
u
b
f
o
r
m
u
l
a
s

E2.7. For each of the formulas in E2.6a - e, produce an unabbreviating tree to find
the unabbreviated expression it represents.

a. .A ^ B/! C

A

@
@
@

B

�
�
�

C

�
�
�
�
�
��

�.A! �B/

@
@
@

By AB(^)

.�.A! �B/! C / Adding outer ( )

E2.8. For each of the unabbreviated expressions from E2.7a - e, produce a complete
tree to show by direct application FR that it is an official formula.
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a. .�.A! �B/! C /

A

L
L
L
L
L
LL

B C

�
�
�
�
�
�
�
�
�
�
�
�
�
��

Formulas by FR(s)

�B

�
�
�

Formula by FR(�)

.A! �B/ Formula by FR(!)

�.A! �B/

\
\
\

Formula by FR(�)

.�.A! �B/! C / Formula by FR(!)

Chapter Three

E3.1. Where A1 is as above, construct derivations to show each of the following.

a. A ^ .B ^ C/
À1

B

1. A ^ .B ^ C/ prem
2. ŒA ^ .B ^ C/�! .B ^ C/ ^2
3. B ^ C 2,1 MP
4. .B ^ C/! B ^1
5. B 4,3 MP

E3.2. Provide derivations for T3.6, T3.7, T3.9, T3.10, T3.11, T3.12, T3.13, T3.14,
T3.15, T3.16, T3.18, T3.19, T3.20, T3.21, T3.22, T3.23, T3.24, T3.25, and
T3.26. As you are working these problems, you may find it helpful to refer to
the AD summary on p. ??.

T3.12.
ÀD

.A! B/! .��A! ��B/

1. ��A! A T3.10
2. .��A! A/! Œ.A! B/! .��A! B/� T3.5
3. .A! B/! .��A! B/ 2,1 MP
4. B ! ��B T3.11
5. .A! ��B/! Œ.��A! B/! .��A! ��B/� T3.4
6. .��A! B/! .��A! ��B/ 5,4 MP
7. .A! B/! .��A! ��B/ 3,6 T3.2
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T3.16.
ÀD

A! Œ�B ! �.A! B/�

1. .A! B/! .A! B/ T3.1
2. A! Œ.A! B/! B� 1 T3.3
3. Œ.A! B/! B�! Œ�B ! �.A! B/� T3.13
4. A! Œ�B ! �.A! B/� 2,3 T3.2

T3.21. A! .B ! C/
ÀD

.A ^B/! C

1. A! .B ! C/ prem
2. .B ! C/! .�C ! �B/ T3.13
3. A! .�C ! �B/ 1,2 T3.2
4. �C ! .A! �B/ 3, T3.3
5. Œ�C ! .A! �B/�! Œ�.A! �B/! C � T3.14
6. �.A! �B/! C 5,4 MP
7. .A ^B/! C 6 abv

E3.3. For each of the following, expand the derivations to include all the steps
from theorems. The result should be a derivation in which each step is either a
premise, an axiom, or follows from previous lines by a rule.

b. Expand the derivation for T3.4
1. .B! C/! ŒA! .B! C/� A1
2. ŒA! .B! C/�! Œ.A! B/! .A! C/� A2
3. .ŒA! .B! C/�! Œ.A! B/! .A! C/�/!

Œ.B! C/! .ŒA! .B! C/�! Œ.A! B/! .A! C/�/� A1
4. .B! C/! .ŒA! .B! C/�! Œ.A! B/! .A! C/�/ 3,2 MP
5. Œ.B! C/! .ŒA! .B! C/�! Œ.A! B/! .A! C/�/�!

Œ..B! C/! ŒA! .B! C/�/! ..B! C/! Œ.A! B/! .A! C/�/� A2
6. ..B! C/! ŒA! .B! C/�/! ..B! C/! Œ.A! B/! .A! C/�/ 5,4 MP
7. .B! C/! Œ.A! B/! .A! C/� 6,1 MP

E3.4. Consider an axiomatic system A2 as described in the main problem. Provide
derivations for each of the following, where derivations may appeal to any prior
result (no matter what you have done).

a. A! B; B ! C
À2
�.�C ^A/

1. A! B prem
2. .A! B/! Œ�.B ^�C/! �.�C ^A/� A3
3. �.B ^�C/! �.�C ^A/ 2,1 MP
4. B ! C prem
5. �.B ^�C/ 4 abv
6. �.�C ^A/ 5,3 MP
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d.
À2
�.A ^B/! .B ! �A/

1. ��A! A (c)
2. .��A! A/! Œ�.A ^B/! �.B ^��A/� A3
3. �.A ^B/! �.B ^��A/ 2,1 MP
4. �.A ^B/! .B ! �A/ 3 abv

g. �A! �B
À2

B ! A

1. �A! �B prem
2. .�A! �B/! Œ�.�B ^B/! �.B ^�A/� A3
3. �.�B ^B/! �.B ^�A/ 2,1 MP
4. �.�B ^B/ (b)
5. �.B ^�A/ 3,4 MP
6. B ! A 5 abv

i. A! B; B ! C ; C ! D
À2

A! D

1. A! B prem
2. B ! C prem
3. �.�C ^A/ 1,2 (a)
4. C ! D prem
5. .C ! D/! .�D ! �C/ (f)
6. �D ! �C 5,4 MP
7. .�D ! �C/! Œ�.�C ^A/! �.A ^�D/� A3
8. �.�C ^A/! �.A ^�D/ 7,6 MP
9. �.A ^�D/ 8,3 MP

10. A! D 9 abv

u.
À2

ŒA! .B ! C/�! Œ.A ^B/! C �

1. Œ.A ^B/ ^�C �! ŒA ^ .B ^�C/� (s)
2. .B ^�C/! ��.B ^�C/ (e)
3. ŒA ^ .B ^�C/�! ŒA ^��.B ^�C/� 2 (q)
4. Œ.A ^B/ ^�C �! ŒA ^��.B ^�C/� 1,3 (l)
5. .Œ.A ^B/ ^�C �! ŒA ^��.B ^�C/�/!

.�ŒA ^��.B ^�C/�! �Œ.A ^B/ ^�C �/ (f)
6. �ŒA ^��.B ^�C/�! �Œ.A ^B/ ^�C � 5,4 MP
7. ŒA! .B ! C/�! Œ.A ^B/! C � 6 abv
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w. A! B; A! .B ! C/
À2

A! C

1. A! .B ! C/ prem
2. ŒA! .B ! C/�! Œ.A ^B/! C � (u)
3. .A ^B/! C 2,1 MP
4. A! A (j)
5. A! B prem
6. A! .A ^B/ 4,5 (r)
7. A! C 6,3 (l)

Chapter Four

E4.1. Where the interpretation is as in J from p. 64, use trees to decide whether the
following sentences of Ls are T or F.

a. �A false

A.T/ From J

�A.F/ By T(�), row 1

e. �.A! A/ false

A.T/

@
@
@

A.T/

�
�
�

From J

.A! A/.T/ By T(!), row 1

�.A! A/.F/ By T(�), row 1

f. .�A! A/ true

A.T/ A.T/

�
�
�
�
�
��

From J

�A.F/

@
@
@

By T(�), row 1

.�A! A/.T/ By T(!), row 3
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i. .A! �B/! �.B ! �A/ true

A.T/

L
L
L
L
L
LL

B.T/ B.T/

L
L
L
L
L
LL

A.T/ From J

�B.F/

�
�
�

�A.F/

�
�
�

By T(�), row 1

.A! �B/.F/

\
\
\
\
\
\\

.B ! �A/.F/ By T(!), row 2

�.B ! �A/.T/

��
����

By T(�), row 2

.A! �B/! �.B ! �A/.T/ By T(!), row 3

E4.2. For each of the following sentences of Ls construct a truth table to determine
its truth value for each of the possible interpretations of its basic sentences.

a. ��A

A ��A

T T F
F F T

d. .�B ! A/! B

A B .�B ! A/ ! B

T T F T T
T F T T F
F T F T T
F F T F T

g. C ! .A! B/

A B C C ! .A ! B/

T T T T T
T T F T T
T F T F F
T F F T F

F T T T T
F T F T T
F F T T T
F F F T T
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i. .�A! B/! .�C ! D/

A B C D .�A ! B/ ! .�C ! D/

T T T T F T T F T
T T T F F T T F T
T T F T F T T T T
T T F F F T F T F

T F T T F T T F T
T F T F F T T F T
T F F T F T T T T
T F F F F T F T F

F T T T T T T F T
F T T F T T T F T
F T F T T T T T T
F T F F T T F T F

F F T T T F T F T
F F T F T F T F T
F F F T T F T T T
F F F F T F T T F

E4.3. For each of the following, use truth tables to decide whether the entialment
claims hold.

a. A! �A �
s
�A valid

A A ! �A / �A

T T F F T F T
F F T T F T F

c. A! B , �A �
s
�B invalid

A B A ! B �A / � B

T T T F F
T F F F T
F T T T F (
F F T T T

g. �
s

ŒA! .C ! B/�! Œ.A! C /! .A! B/� valid

A B C ŒA ! .C ! B/� ! Œ.A ! C / ! .A ! B/�

T T T T T T T T T
T T F T T T F T T
T F T F F T T F F
T F F T T T F T F

F T T T T T T T T
F T F T T T T T T
F F T T F T T T T
F F F T T T T T T
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E4.4. For each of the following, use truth tables to decide whether the entialment
claims hold.

c. B _�C �
s

B ! C invalid

B C B _ �C / B ! C

T T T F T
T F T T F (

F T F F T
F F T T T

d. A _ B , �C ! �A, �.B ^�C / �
s

C valid

A B C A _ B �C ! �A � .B ^ �C / / C

T T T T F T F T F F T
T T F T T F F F T T F
T F T T F T F T F F T
T F F T T F F T F T F

F T T T F T T T F F T
F T F T T T T F T T F
F F T F F T T T F F T
F F F F T T T T F T F

h. �
s
�.A$ B/$ .A ^�B/ invalid

A B � .A $ B/ $ .A ^ �B/

T T F T T F F
T F T F T T T
F T T F F F F (

F F F T T F T

E4.5. For each of the following, use truth tables to decide whether the entailment
claims hold.

a. 9xAx ! 9xBx, �9xAx �
s
9xBx invalid

9xAx 9xBx 9xAx ! 9xBx �9xAx / 9xBx

T T T F T
T F F F F
F T T T T
F F T T F (

Chapter Five

E5.1. For each of the following, identify the simple sentences that are parts. If the
sentence is compound, use underlines to exhibit its operator structure, and say
what is its main operator.

Exercise 5.1
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h. Hermoine believes that studying is good, and Hermione studies hard, but Ron
believes studying is good, and it is not the case that Ron studies hard.

Simple sentences:
Stydying is good
Hermione studies hard
Ron studies hard

Hermoine believes that studying is good and Hermione studies hard but Ron
believes studying is good and it is not the case that Ron studies hard.

main operator: but

E5.2. Which of the following operators are truth-functional and which are not? If
the operator is truth-functional, display the relevant table; if it is not, give a case
to show that it is not. Clearly explain your response.

a. It is a fact that truth functional

It is a fact that
T T
F F

In any situation, the compound takes the same value as the sentence in the blank.
So the operator is truth-functional.

c. but truth functional

but
T T T
T F F
F F T
F F F

In any situation this operator takes the same value as and . Though
‘but’ may carry a conversational sense of opposition not present with ‘and’ the
truth value of the compound works the same. Thus, where Bob loves Sue even
‘Bob loves Sue but Bob loves Sue’ might elicit the response “True, but why did
you say that?”

f. It is always the case that not truth functional

It may be that any false sentence in the blank results in a false compound.
However, consider something true in the blank: perhaps ‘I am at my desk’ and
‘Life is hard’ are both true. But

It is always the case that I am at my desk
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It is always the case that life is hard

are such that the first is false, but the second remains true. For perhaps I
sometimes get up from my desk (so that the first is false), but the difficult
character of living goes on and on (and on). Thus there are situations where
truth values of sentences in the blanks are the same, but the truth values of
resultant compounds are different. So the operator is not truth-functional.

E5.3. Use our method to expose truth functional structure and produce parse trees
for each of the following. Use your trees to produce an interpretation function
for the sentences.

d. It is not the case that: Bingo is spotted and Spot can play bingo.

It is not the case that Bingo is spotted and Spot can play bingo

Bingo is spotted and Spot can play bingo
������

PPPPPP
Bingo is spotted Spot can play bingo

From this sentence, II includes,

B: Bingo is spotted

S : Spot can play bingo

E5.4. Use our method to expose truth functional structure and produce parse trees
for each of the following. Use your trees to produce an interpretation function
for the sentences.

a. People have rights and dogs have rights, but rocks do not.

People have rights and dogs have rights but it is not the case that rocks have rights
��������

``````````
People have rights and dogs have rights it is not the case that rocks have rights

rocks have rights

�
���

H
HHH

People have rights dogs have rights

From this sentence, II includes,
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P : People have rights

D: Dogs have rights

R: Rocks have rights

E5.5. Construct parallel trees to complete the translation of the sentences from E5.3
and E5.4.

d. It is not the case that: Bingo is spotted and Spot can play bingo.

It is not the case that Bingo is spotted and Spot can play bingo

Bingo is spotted and Spot can play bingo
������

PPPPPP
Bingo is spotted Spot can play bingo

�.B ^ S/

.B ^ S/

�
�
@
@

B S

Where II includes,

B: Bingo is spotted

S : Spot can play bingo

a. People have rights and dogs have rights, but rocks do not.

People have rights and dogs have rights but it is not the case that rocks have rights
��������

XXXXXXXX
People have rights and dogs have rights it is not the case that rocks have rights

rocks have rights

��
��

HH
HH

People have rights dogs have rights

Where II includes,

P : People have rights

D: Dogs have rights

R: Rocks have rights

..P ^D/ ^�R/

�
���

H
HHH

.P ^D/

�
�
@
@

�R

P D R

E5.6. Use our method to translate each of the following. That is, generate parse trees
with an interpretation function for all the sentences, and then parallel trees to
produce formal equivalents.
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c. It is not the case that: everything Plato, and Aristotle, and Ayn Rand said was true.
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E5.8. Using the given interpretation function, produce parse trees and then parallel
ones to complete the translation for each of the following.

h. Not both Bob and Sue are cool.

It is not the case that Bob is cool and Sue is cool

Bob is cool and Sue is cool
��

��

HH
HH

Bob is cool Sue is cool

�.B1 ^ S1/

.B1 ^ S1/

�
�
@
@

B1 S1

E5.9. Use our method to translate each of the following. That is, generate parse trees
with an interpretation function for all the sentences, and then parallel trees to
produce formal equivalents.
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d. Neither Harry, nor Ron, nor Hermione are Muggles.
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g. Although blatching and blagging are illegal in Quidditch, the woolongong shimmy is not.
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E5.10. Using the given interpretation function, produce parse trees and then parallel
ones to complete the translation for each of the following.

e. If Timmy is in trouble, then if Lassie barks Pa will help.

If Timmy is in trouble then if Lassie barks, Pa will help
������

PPPPPP
Timmy is in trouble if Lassie barks Pa will help

�
���

H
HHH

Lassie barks Pa will help

.T ! .L! P //

�
�
�

Q
Q
Q

T .L! P /

�
�
@
@

L P
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i. If Timmy is in trouble, then either Lassie is not healthy or if Lassie barks then Pa will help.
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E5.11. Use our method, with or without parse trees, to produce a translation, includ-
ing interpretation function for the following.

g. If you think animals do not feel pain, then vegetarianism is not right.

Include in the interpretation function,

V : Vegetarianism is right

Exercise 5.11.g
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N : You think it is not the case that animals feel pain

.N ! �V /

i. Vegetarianism is right only if both animals feel pain, and animals have intrinsic
value just in case they feel pain; but it is not the case that animals have intrinsic
value just in case they feel pain.

Include in the interpretation function,

V : Vegetarianism is right

P : Animals feel pain

I : Animals have intrinsic value

ŒV ! .P ^ .I $ P //� ^ .�I $ P /

E5.12. For each of the following arguments: (i) Produce an adequate translation, in-
cluding interpretation function and translations for the premises and conclusion.
Then (ii) use truth tables to determine whether the argument is sententially valid.

a. Our car will not run unless it has gasoline
Our car has gasoline

Our car will run

Include in the interpretation function:

R: Our car will run

G: Our car has gasoline

Formal sentences:

�R _G

G

R

Truth table:

G R �R _ G G / R

T T F T T T
T F T T T F (
F T F F F T
F F T T F F

Not sententially valid

Exercise 5.12.a
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Chapter Six

E6.1. Show that each of the following is valid in N1. Complete (a) - (d) using just
rules R1, R3 and R4. You will need an application of R2 for (e).

a. .A ^ B/ ^ C
Ǹ1

A

1. .A ^ B/ ^ C P

2. A ^ B 1 R3
3. A 2 R3 Win!

E6.2. (i) For each of the arguments in E6.1, use a truth table to decide if the argument
is sententially valid.

a. .A ^ B/ ^ C
Ǹ1

A

A B C .A ^ B/ ^ C / A

T T T T T T
T T F T F T
T F T F F T
T F F F F T

F T T F F F
F T F F F F
F F T F F F
F F F F F F

There is no row where the premise is true and the conclusion is false; so this
argument is sententially valid.

E6.3. Consider a derivation with structure as in the main problem. For each of the
lines (3), (6), (7) and (8) which lines are accessible? which subderivatrions (if
any) are accessible?

accessible lines accessible subderivations
line 6 (1), (4), (5) 2-3

E6.4. Suppose in a derivation with structure as in E6.3 we have obtained a formula
A on line (3). (i) On what lines would we be allowed to conclude A by 3 R?
Suppose there is a formula B on line (4). (ii) On what lines would be be allowed
to conclude B by 4 R?

(i) There are no lines on which we could conclude A by 3 R.

E6.6. The following are not legitimate ND derivations. In each case, explain why.

Exercise 6.6
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a. 1. .A ^ B/ ^ .C ! B/ P

2. A 1 ^E

This does not apply the rule to the main operator. From (1) by ^E we can get
A^B or C ! B . From the first A would follow by a second application of the
rule.

E6.7. Provide derivations to show each of the following.

b. A ^ B , B ! C
ǸD

C

1. A ^ B P
2. B ! C P

3. B 1 ^E
4. C 2,3!E

e. A! .A! B/
ǸD

A! B

1. A! .A! B/ P

2. A A (g,!I)

3. A! B 1,2!E
4. B 3,2!E

5. A! B 2-4!I

h. A! B , B ! C
ǸD

.A ^K/! C

1. A! B P
2. B ! C P

3. A ^K A (g,!I)

4. A 3 ^E
5. B 1,4!E
6. C 2,5!E

7. .A ^K/! C 3-6!I

l. A! B
ǸD

.C ! A/! .C ! B/

1. A! B P

2. C ! A A (g,!I)

3. C A (g,!I)

4. A 2,3!E
5. B 1,4!E

6. C ! B 3-5!I

7. .C ! A/! .C ! B/ 2-6!I

Exercise 6.7.l
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E6.9. The following are not legitimate ND derivations. In each case, explain why.

c. 1. W P

2. R A (c, �I)

3. �W A (c, �I)

4. ? 1,3 ?I

5. �R 2-4 �I

There is no contradiction against the scope line for assumption R. So we are
not justified in exiting the subderivation that begins on (2). The contradiction
does justify exiting the subderivation that begins on (3) with the conclusion W

by 3-4 �E. But this would still be under the scope of assumption R, and does
not get us anywhere, as we already had W at line (1)!

E6.10. Produce derivations to show each of the following.

c. �A! B , �B
ǸD

A

1. �A! B P
2. �B P

3. �A A (c, �E)

4. B 1,3!E
5. ? 4,2 ?I

6. A 3-5 �E

g. A _ .A ^ B/
ǸD

A

1. A _ .A ^ B/ P

2. A A (g, 1_E)

3. A 2 R

4. A ^ B A (g, 1_E)

5. A 4 ^E

6. A 1,2-3,4-5 _E

Exercise 6.10.g
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l. A! �B
ǸD

B ! �A

1. A! �B P

2. B A (g,!I)

3. A A (c, �I)

4. �B 1,3!E
5. ? 2,4 ?I

6. �A 3-5 �I

7. B ! �A 2-6!I

E6.12. Each of the following are not legitimate ND derivations. In each case, explain
why.

c. 1. A$ B P

2. A 1$E

$E takes as inputs a biconditional and one side or the other. We cannot get A

from (1) unless we already have B .

E6.13. Produce derivations to show each of the following.

a. .A ^ B/$ A
ǸD

A! B

1. .A ^ B/$ A P

2. A A (g,!I)

3. A ^ B 1,2$E
4. B 3 ^E

5. A! B 2-4!I

e. A$ .B ^ C /, B
ǸD

A$ C

1. A$ .B ^ C / P
2. B P

3. A A (g,$I)

4. B ^ C 1,3$E
5. C 4 ^E

6. C A (g,$I)

7. B ^ C 2,6 ^I
8. A 1,7$E

9. A$ C 3-5,6-8$I

Exercise 6.13.e
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k.
ǸD
��A$ A

1. ��A A (g,$I)

2. �A A (c, �E)

3. ��A 1 R
4. ? 2,3 ?I

5. A 2-4 �E

6. A A (g$I)

7. �A A (g, �I)

8. A 6 R
9. ? 8,7 ?I

10. ��A 7-9 �I

11. ��A$ A 1-5,6-10$I

E6.14. For each of the following, (i) which primary strategy applies? and (ii) what
is the next step? If the strategy calls for a new subgoal, show the subgoal; if it
calls for a subderivation, set up the subderivation. In each case, explain your
response.

c. 1. �A$ B P

B $ �A

(i) There is no contradiction in accessible lines so SG1 does not apply. There
is no disjunction in accessible lines so SG2 does not apply. The goal does not
appear in the premises so SG3 does not apply. (ii) Given this, we apply SG4 and
go for the goal by$I. For this goal$I requires a pair of subderivations which
set up as follows.

1. �A$ B P

2. B A (g$I)

�A

�A A (g$I)

B

B $ �A , $I

Exercise 6.14.c
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E6.15. Produce derivations to show each of the following. No worked out answers
are provided. However, if you get stuck, you will find strategy hints in the back.

a. A$ .A! B/
ǸD

A! B

Hint: There is no contradiction or disjunction; and the goal is not in the premises.
So set up to get the primary goal by!I in application of SG4.

b. .A _ B/! .B $ D/, B
ǸD

B ^D

Hint: There is no contradiction or disjunction; and the goal is not in the premises.
So plan to get the primary goal by ^I in application of SG4. Then it is a matter
of SG3 to get the parts.

c. �.A ^ C /, �.A ^ C /$ B
ǸD

A _ B

Hint: There is no contradiction or disjunction; and the goal is not in the premises.
So plan to get the primary goal by (one form of) _I in application of SG4.

d. A ^ .C ^�B/, .A _D/! �E
ǸD
�E

Hint: There is no contradiction or disjunction; but the goal exists in the premises.
So proceed by application of SG3.

e. A! B , B ! C
ǸD

A! C

Hint: There is no contradiction or disjunction; and the goal is not in the premises.
So set up to get the primary goal by!I in application of SG4.

f. .A ^ B/! .C ^D/
ǸD

Œ.A ^ B/! C � ^ Œ.A ^ B/! D�

Hint: There is no contradiction or disjunction; and the goal is not in the premises.
So set up to get the primary goal by ^I in application of SG4. Then apply SG4
and!I again for your new subgoals.

g. A! .B ! C /, .A ^D/! E, C ! D
ǸD

.A ^ B/! E

Hint: There is no contradiction or disjunction; and the goal is not in the premises.
So set up to get the primary goal by!I in application of SG4. Then it is a matter
of SG3.

h. .A! B/ ^ .B ! C /, Œ.D _E/ _H�! A, �.D _E/ ^H
ǸD

C

Hint: There is no contradiction or disjunction; but the goal is in the premises.
So proceed by application of SG3.

Exercise 6.15.h
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i. A! .B ^ C /, �C
ǸD
�.A ^D/

Hint: There is no contradiction or disjunction; and the goal is not in the premises.
So set up to get the primary goal by �I in application of SG4.

j. A! .B ! C /, D ! B
ǸD

A! .D ! C /

Hint: There is no contradiction or disjunction; and the goal is not in the premises.
So set up to get the primary goal by!I in application of SG4. Similar reasoning
applies to the secondary goal.

k. A! .B ! C /
ǸD
�C ! �.A ^ B/

Hint: There is no contradiction or disjunction; and the goal is not in the premises.
So set up to get the primary goal by!I in application of SG4. You can also
apply SG4 to the secondary goal.

l. .A ^�B/! �A
ǸD

A! B

Hint: There is no simple contradiction or disjunction; and the goal is not in the
premises. So set up to get the primary goal by!I in application of SG4. This
time the secondary goal has no operator, and so falls all the way through to SG5.

m. �B $ A, C ! B , A ^ C
ǸD
�K

Hint: There is no contradiction or disjunction; and the goal is not in the premises.
So set up to get the primary goal by�I in application of SG4. This works because
the premises are themselves inconsistent.

n. �A
ǸD

A! B

Hint: After you set up for the main goal, look for an application of SG1.

o. �A$ �B
ǸD

A$ B

Hint: After you set up for the main goal, look for applications of SG5.

p. .A _ B/ _ C , B $ C
ǸD

C _ A

Hint: This is not hard, if you recoginize each of the places where SG2 applies.

q.
ǸD

A! .A _ B/

Hint: Do not panic. Without premises, there is definately no contradiction or
disjunction; and the goal is not in accessible lines! So set up to get the primary
goal by!I in application of SG4.
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r.
ǸD

A! .B ! A/

Hint: Apply SG4 to get the goal, and again for the subgoal.

s.
ǸD

.A$ B/! .A! B/

Hint: This requires multiple applications of SG4.

t.
ǸD

.A ^�A/! .B ^�B/

Hint: Once you set up for the main goal, look for an application of SG1.

u.
ǸD

.A! B/! Œ.C ! A/! .C ! B/�

Hint: This requires multiple applications of SG4.

v.
ǸD

Œ.A! B/ ^�B�! �A

Hint: Apply SG4 to get the main goal, and again to get the subgoal.

w.
ǸD

A! ŒB ! .A! B/�

Hint: This requires multiple applications of SG4.

x.
ǸD
�A! Œ.B ^ A/! C �

Hint: After a couple applications of SG4, you will have occaision to make use
of SG1 — or equivalently, SG5.

y.
ǸD

.A! B/! Œ�B ! �.A ^D/�

Hint: This requires multiple applications of SG4.

E6.16. Produce derivations to demonstrate each of T6.1 - T6.20.

T6.3.
ǸD

.�Q! �P /! ..�Q! P /! Q/

1. �Q! �P A (g,!I)

2. �Q! P A (g,!I)

3. �Q A (c, �E)

4. P 2,3!E
5. �P 1,3!E
6. ? 4,5 ?I

7. Q 3-6 �E

8. .�Q! P /! Q 2-7!I

9. .�Q! �P /! ..�Q! P /! Q/ 1-8!I

Exercise 6.16 T6.3
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T6.13.
ǸD

.A _B/$ .B _A/

1. A _B A (g,$I)

2. A A (g, 1_E)

3. B _A 2 _I

4. B A (g, 1_E)

5. B _A 4 _I

6. B _A 1,2-3,4-5 _E

7. B _A A (g,$I)

8. B A (g, 7_E)

9. A _B 8 _I

10. A A (g, 7_E)

11. A _B 10 _I

12. A _B 7,8-9,10-11 _E

13. .A _B/$ .B _A/ 1-6,7-12$I

E6.17. Each of the following begins with a simple application of �I or �E for SG4
or SG5. Complete the derivations, and explain your use of secondary strategy.

a. 1. A ^ B P
2. �.A ^ C / P

3. C A (c, �I)

?

�C

1. A ^ B P
2. �.A ^ C / P

3. C A (c, �I)

4. A 1 ^E
5. A ^ C 4,3 ^I
6. ? 5,2 ?I

7. �C 3-6 �I

There is no contradiction by atomics and negated atomics. And there is no
disjunction in the scope of the assumption for �I. So we fall through to SC3.
For this set the opposite of (2) as goal, and use primary strategies for it. The
derivation of A ^ C is easy.

E6.18. Produce derivations to show each of the following. No worked out answers
are provided. However, if you get stuck, you will find strategy hints in the back.

a. A! �.B ^ C /, B ! C
ǸD

A! �B

Apply primary strategies for !I and �I. Then there will be occasion for a
simple application of SC3.

Exercise 6.18.a
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b.
ǸD
�.A! A/! A

Apply primary strategies for !I and �E. Then there will be occasion for a
simple application of SC3.

c. A _ B
ǸD
�.�A ^�B/

This requires no more than SC1, if you follow the primary strategies properly.
From the start, apply sg2 to go for the whole goal �.�A ^�B/ by _E.

d. �.A ^ B/, �.A ^�B/
ǸD
�A

You will go for the main goal by �I in an instance of SG4. Then it is easiest to
see this as a case where you use the premises for separate instances of SC3. It is,
however, also possible to see the derivation along the lines of SC4.

e.
ǸD

A _�A

For your primary strategy, fall all the way through to SG5. Then you will be
able to see the derivation either along the lines of SC3 or 4, building up to the
opposite of �.A _�A/ twice.

f.
ǸD

A _ .A! B/

Your primary strategy falls through to SG5. Then �A is sufficient to prove
A! B , and this turns into a pure version of the pattern (AQ) for formulas with
main operator _.

g. A _�B , �A _�B
ǸD
�B

For this you will want to apply SG2 to one of the premises (it does not matter
which) for the goal. This gives you a pair of subderivations. One is easy. In the
other, SG2 applies again!

h. A$ .�B _ C /, B ! C
ǸD

A

The goal is in the premises, so your primary strategy is SG3. The real challenge
is getting�B_C . For this you will fall through to SG5, and assume its negation.
Then the derivation can be conceived either along the lines of SC3 or SC4, and
on the standard pattern for disjunctions.

i. A$ B
ǸD

.C $ A/$ .C $ B/

Applying SG4, set up for the primary goal by$I. You will then need$I for
the subgoals as well.

Exercise 6.18.i
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j. A$ �.B $ �C /, �.A _ B/
ǸD

C

Fall through to SG5 for the primary goal. Then you can think of the derivation
along the lines of SC3 or SC4. The derivation of A _ B works on the standard
pattern, insofar as with the assumption �C , �A gets you B .

k. ŒC _ .A _ B/� ^ .C ! E/, A! D, D ! �A
ǸD

C _ B

Though officially there is no formula with main operator _, a minor reshuffle
exposes C _ .A _ B/ on an accessible line. Then the derivation is naturally
driven by applications of SG2.

l. �.A! B/, �.B ! C /
ǸD
�D

Go for the main goal by �I in applicaiton of SG4. Then it is most natural to see
the derivation as involving two separate applications of SC3. It is also possible
to set the derivation up along the lines of SC4, though this leads to a rather
different result.

m. C ! �A, �.B ^ C /
ǸD

.A _ B/! �C

Go for the primary goal by!I in application of SG4. Then you will need to
apply SG2 to reach the subgoal.

n. �.A$ B/
ǸD
�A$ B

Go for the primary goal by $I in application of SG4. You can go for one
subgoal by �E, the other by �I. Then fall through to SC3 for the conradictions,
where this will involve you in further instances of$I. The derivation is long,
but should be straightforward if you follow the strategies.

o. A$ B , B $ �C
ǸD
�.A$ C /

Go for the primary goal by �I in application of SG4. Then the contradiction
comes by application of SC4.

p. A _ B , �B _ C , �C
ǸD

A

This will set up as a couple instances of _E. If you begin with A _ B , one
subderivation is easy. In the second, be on the lookout for a couple instances of
SG1.

q. .�A _ C / _D, D ! �B
ǸD

.A ^ B/! C

Officially, the primary strategy should be _E in application of SG2. How-
ever, in this case it will not hurth to begin with!I, and set up _E inside the
subderivation for that.

Exercise 6.18.q
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r. A _D, �D $ .E _ C /, .C ^ B/ _ ŒC ^ .F ! C /�
ǸD

A

The two disjunctions require applications of SG2. In fact, there are ways to
simplify this from the mechanical version entirely driven by the strategy.

s. .A_B/_ .C ^D/, .A$ E/^ .B ! F /, G $ �.E _F /, C ! B
ǸD
�G

This derivation is driven by _E in application of SG2 and then SC3. Again, there
are ways to make the derivation relatively more elegant.

t. .A _ B/ ^�C , �C ! .D ^�A/, B ! .A _E/
ǸD

E _ F

Since there is no F in the premises, it makes sense to think the conclusion is
true because E is true. So it is safe to set up to get the conclusion from E by
_I. After some simplification, the overall strategy is revealed to be _E based on
A _B , in application of SG2. One subderivation has another formula with main
operator _, and so another instance of _E.

E6.19. Produce derivations to demonstrate each of T6.21 - T6.28.

Exercise 6.19



ANSWERS FOR CHAPTER 7 240

T6.21.
ǸD
�.A ^B/$ .�A _�B/

1. �.A ^B/ A (g,$I)

2. �.�A _�B/ A (c, �E)

3. �A A (c, �E)

4. �A _�B 3 _I
5. ? 4,2 ?I

6. A 3-5 �E
7. �B A (c, �E)

8. �A _�B 7 _I
9. ? 8,2 ?I

10. B 7-9 �E
11. A ^B 6,10 ^I
12. ? 11,1 ?I

13. �A _�B 2-12 �E

14. �A _�B A (g,$I)

15. �A A (g, 14_E)

16. A ^B A (c, �I)

17. A 16 ^E
18. ? 17,15 ?I

19. �.A ^B/ 16-18 �I

20. �B A (g, 14_E)

21. A ^B A (c, �I)

22. B 21 ^E
23. ? 22,20 ?I

24. �.A ^B/ 21-23 �I

25. �.A ^B/ 14,15-19,20-24 _E

26. �.A ^B/$ .�A _�B/ 1-13,14-25$I

Chapter Seven

E7.1. Suppose IŒA� = T, IŒB� 6= T and IŒC � = T. For each of the following, produce a
formalized derivation, and then non-formalized reasoning to demonstrate either
that it is or is not true on I.

Exercise 7.1
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b. IŒ�B ! �C � 6= T

1. IŒB� 6= T prem
2. IŒ�B� = T 1 ST(�)
3. IŒC � = T prem
4. IŒ�C � 6= T 3 ST(�)
5. IŒ�B� = T M IŒ�C � 6= T 2,4 cnj
6. IŒ�B ! �C � 6= T 5 ST(!)

It is given that IŒB� 6= T; so by ST(�),
IŒ�B� = T. But it is given that IŒC � = T;
so by ST(�), IŒ�C � 6= T. So IŒ�B� = T
and IŒ�C � 6= T; so by ST(!), IŒ�B !

�C � 6= T.

E7.2. Produce a formalized derivation, and then informal reasoning to demonstrate
each of the following.

a. A! B , �A 6�
s
�B

Set JŒA� 6= T, JŒB� = T

1. JŒA� 6= T ins (J particular)
2. JŒ�A� = T 1 ST(�)
3. JŒA� 6= T O JŒB� = T 1 dsj
4. JŒA! B� = T 3 ST(!)
5. JŒB� = T ins
6. JŒ�B� 6= T 5 ST(�)
7. JŒA! B� = T M JŒ�A� = T M JŒ�B� 6= T 4,2,6 cnj
8. S I.IŒA! B� = T M IŒ�A� = T M IŒ�B� 6= T/ 7 exs
9. A! B;�A 6�s �B 8 SV

JŒA� 6= T; so by ST(�), JŒ�A� = T. But since JŒA� 6= T, JŒA� 6= T or JŒB� = T; so by
ST(!), JŒA ! B� = T. And JŒB� = T; so by ST(�), JŒ�B� 6= T. So JŒA ! B� = T,
and JŒ�A� = T, but JŒ�B� 6= T; so there is an interpretation I such that IŒA! B� = T,
and IŒ�A� = T, but IŒ�B� 6= T; so by SV, A! B , �A 6�

s
�B .

b. A! B , �B �
s
�A

1. A! B;�B 6�s �A assp
2. S I.IŒA! B� = T M IŒ�B� = T M IŒ�A� 6= T/ 1 SV
3. JŒA! B� = T M JŒ�B� = T M JŒ�A� 6= T 2 exs (J particular)
4. JŒ�B� = T 3 cnj
5. JŒB� 6= T 4 ST(�)
6. JŒA! B� = T 3 cnj
7. JŒA� 6= T O JŒB� = T 6 ST(!)
8. JŒA� 6= T 7,5 dsj
9. JŒ�A� 6= T 3 cnj

10. JŒA� = T 9 ST(�)
11. ? 8,10 bot
12. A! B;�B �s �A 1-11 neg

Exercise 7.2.b
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Suppose A ! B , �B 6�
s
�A; then by SV there is an I such that IŒA ! B� = T

and IŒ�B� = T and IŒ�A� 6= T. Let J be a particular interpretation of this sort; then
JŒA! B� = T and JŒ�B� = T and JŒ�A� 6= T. Since JŒ�B� = T, by ST(�), JŒB� 6= T.
And since JŒA ! B� = T, either JŒA� 6= T or JŒB� = T; so JŒA� 6= T. But since
JŒ�A� 6= T, by ST(�), JŒA� = T. This is impossible; reject the assumption: A ! B ,
�B �

s
�A.

E7.4. Complete the demonstration of derived clauses ST0 by completing the demon-
stration for dst in the other direction (and providing demonstrations for other
clauses).

1. Œ.A M B/ O .:A M :B/� M :Œ.:A O B/ M .:B O A/� assp
2. .A M B/ O .:A M :B/ 1 cnj
3. :Œ.:A O B/ M .:B O A/� 1 cnj
4. :.:A O B/ O :.:B O A/ 3 dem
5. :A O B assp
6. :.:B O A/ 4,5 dsj
7. B M :A 6 dem
8. B 7 cnj
9. A O B 8 dsj

10. :.:A M :B/ 9 dem
11. A M B 2,10 dsj
12. A 11 cnj
13. :A 7 cnj
14. ? 12,13 bot
15. :.:A O B/ 5-14 neg
16. A M :B 15 dem
17. A 16 cnj
18. A O B 17 dsj
19. :.:A M :B/ 18 dem
20. A M B 2,19 dsj
21. B 20 cnj
22. :B 16 cnj
23. ? 21,22 bot
24. Œ.A M B/ O .:A M :B/�) Œ.:A O B/ M .:B O A/� 1-23 cnd

E7.5. In the non-formalized style, show the following semantic principles for$.

a. Coms: IŒA$ B� = T iff IŒB $ A� = T.

Suppose IŒA$ B� = T; then by ST0($), (IŒA� = T and IŒB� = T) or (IŒA� 6= T
and IŒB� 6= T). Suppose IŒA� = T and IŒB� = T; then IŒB� = T and IŒA� = T;

Exercise 7.5.a
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so (IŒB� = T and IŒA� = T) or (IŒB� 6= T and IŒA� 6= T); so by ST0($),
IŒB $ A� = T. And similarly if IŒA� 6= T and IŒB� 6= T.

Suppose IŒA$ B� 6= T; then by ST0($), (IŒA� = T and IŒB� 6= T) or (IŒA� 6= T
and IŒB� = T). Suppose IŒA� = T and IŒB� 6= T; then IŒB� 6= T and IŒA� = T;
so (IŒB� = T and IŒA� 6= T) or (IŒB� 6= T and IŒA� = T); so by ST0($),
IŒB $ A� 6= T. And similarly if IŒA� 6= T and IŒB� = T.

So IŒA$ B� = T iff IŒB $ A� = T.

E7.6. Using ST(Í) as on p. 184, produce non-formalized reasonings to show each of
the following.

b. IŒP Í .Q Í Q/� = T iff IŒP ! Q� = T

By ST(Í), IŒP Í .Q Í Q/� = T iff IŒP � 6= T or IŒQ Í Q� 6= T; by ST(Í), iff IŒP � 6= T or
(IŒQ� = T and IŒQ� = T); iff iff IŒP � 6= T or IŒQ� = T; by ST(!), iff IŒP ! Q� = T. So
IŒP Í .Q Í Q/� = T iff IŒP ! Q� = T.

E7.7. Produce non-formalized reasoning to demonstrate each of the following.

b. �.A$ B/, �A, �B �
s

C ^�C

Suppose �.A $ B/, �A, �B 6�
s

C ^ �C ; then by SV there is some I such that
IŒ�.A $ B/� = T, and IŒ�A� = T, and IŒ�B� = T, but IŒC ^ �C � 6= T. Let J be
a particular interpretation of this sort; then JŒ�.A $ B/� = T, and JŒ�A� = T, and
JŒ�B� = T, but JŒC ^�C � 6= T. From the first, by ST(�), JŒA$ B� 6= T; so by ST0($),
(JŒA� = T and JŒB� 6= T) or (JŒA� 6= T and JŒB� = T). But since JŒ�A� = T, by ST(�),
JŒA� 6= T; so JŒA� 6= T or JŒB� = T; so it is not the case that JŒA� = T and JŒB� 6= T; so
JŒA� 6= T and JŒB� = T; so JŒB� = T. But JŒ�B� = T; so by ST(�), JŒB� 6= T. This is
impossible; reject the assumption: �.A$ B/, �A, �B �

s
C ^�C .

c. �.�A ^�B/ 6�
s

A ^ B

Set JŒA� = T and JŒB� 6= T.

JŒA� = T; so by ST(�), JŒ�A� 6= T; so JŒ�A� 6= T or JŒ�B� 6= T; so by ST0(^),
JŒ�A ^ �B� 6= T; so by ST(�), JŒ�.�A ^ �B/� = T. But it is given that JŒB� 6= T;
so JŒA� 6= T or JŒB� 6= T; so by ST0(^), JŒA ^ B� 6= T. So JŒ�.�A ^ �B/� = T and
JŒA ^ B� 6= T; so by SV, �.�A ^�B/ 6�

s
A ^ B .

Exercise 7.7.c
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