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At a Glance

Undergraduate Student Population
— 17,854 (89%)

Fall 2018 Lecture/Seminar Undergraduate Courses (< 500 level)
— 656 courses
— 1,380 sections
— 58,370 total enrollments
— 2,800 (5%) of enrollments are repeats

— 8,023 attempted enroliments (courses full)
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Why Course Success
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Impact on Retention, Graduation, and Y2D

Avg. DFWI’s by 2"d Year Four Year Grad Rate Avg. DFWI’s by Years to

Retention Status by Total DFWI’s Degree

10.9
20%
717
3.9 ‘ 13% 4.06

2.3 67% 1.62

Retained Not Retained Uz 4 Years 5 Years 6 Years 6+ Years
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Impact at the Course Level

2017-18 Lower Division LEC/SEM Courses

e 55(16%) had a DFWI rate of 20% or higher
10,418 of the course enrollments were repeats
e 8,012 attempted enrollments received a course is full message

DFWT/I’s REPEATS COURSE IS FULL
A lower division _ — —
(major) course. . .
DFWI rate of 21%
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Machine Learning Approach
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Machine Learning

A branch of artificial intelligence

— Learn from data
— lIdentify patterns
— Make decisions

Application Examples
— Online recommendations
— Self-driving cars
— Fraud detection
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Application

(2018 CSU Innovation Minigrant)

Powerful data mining software

Accepts various data sources

Automated modeling/model training

Visual interface without programing Language (9

Ability to apply trained models to a separate data [yt AV I,
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Data
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Courses Examined

Historical DFWI Rates
ADMN
BIOL DFWI Counts
3736
MATH
PHIL 2012.13 2013.14 2014.15 2015.16 2016.17 2017.18

1146

BIOL MATH PHIL

SSCI

Lower Division
High Enrollment
High Failure Rate
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Course Success Predictors

Demographics (e.g., Sex & URM)
Student Level

Basis of Admission

Degree Type (e.g., BA)

College of Major

Incoming GPA (i.e., HS & TR GPA)
SAT & ACT Scores

Developmental Math/Placement
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Course Success Predictors

Cumulative GPA

Term Attempted Units

Course Repeat/Highest Previous Grade
# of High DFWI Courses (>25%)
Average DFWI Rates

# of Concurrent Courses with 10%
Higher DFWI Rates When Taken
Together
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DFWI Rates by Math Course Sections

Fall 2017

3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27 28 80 81 82




Course Success Predictors

Term (e.g., Fall)

Campus (SB & Palm Desert)
Meeting Days (e.g., MWF)
Class Begin Time

Instruction Mode (e.g., Online)

Class Size
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Course Success Predictors

Tenure Status

Previous Course Teaching Experience
Average GPA

Average DFWI Rates
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Model Training
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Results
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Model Output

- | |Prediction| Confidence |
Prediction — whether students are
kel to receive DA (1-Yes, 0=No)
Confidence — how likely these

predictions are correct (range: 0 to 1)

Student 162 0.777777778

o
Student 163| 0  |0.777777778
0

Student 164 0.777777778
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Course

Enroliment

Model Prediction & Accuracy

Historical (Summer 2015 to Summer 2018)

Fall 2018

Predicted
DFWI (n)

Predicted
DFWI (%)

Actual
DFWI (n)

Actual
DFWI (%)

Overall Model Accuracy
on Historical Data

Enroliment

Predicted
DFWI (n)

Predicted
DFWI (%)

ADMN

2709

598

22%

641

24%

80%

133

39

29%

BIOL

1276

629

49%

645

51%

77%

408

43%

MATH

8363

2287

27%

2136

26%

81%

681

15%

PHIL

653

267

41%

241

37%

79%

103

33%

SSCI

3557

1004

28%

1231

35%

74%
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Top 5 Predictors (CHAID Model)

Cumulative GPA Cumulative GPA Instructor DFWI Rate Cumulative GPA
Instructor DFWI Rate Student Level Cumulative GPA Instructor Average GPA

Dev. Math Tenure Status| Dev. Math Grade
SAT Score Incoming GPA Concurrent CRS
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U - o C = 0
DFWI Prediction Total Predicted |Predicted DFWI Rate with Instructor
Section Yes No [Enrollment | DFWI Rate | > 60% Expected Accuracy | Historical DFWI

01 34 40 15% 5% 11%
02 38 40 5% 0% 9%
03 1 39 40 3% 3% 16%
04 35 6 41 85% 76% 43%
05 40 40 0% 0% 9%
06 40 40 0% 0% 0%
07 36 40 10% 5% 19%
08 40 41 2% 0% 5%
09 39 40 3% 0% 5%
10 29 11 40 73% 38% 43%
11 2 38 40 5% 3% 16%
12 40 40 0% 0% 15%
13 4 36 40 10% 8% 15%
14 15 25 40 38% 20% 34%
15 2 38 40 5% 3% 16%
80 39 39 0% 0% 8%
81 40 40 0% 0% 8%

Total| 102 579 681 15% 9% 16%




Other Possible Report:

MATH Student with Concurrent Course
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Next Steps
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Process Improvement

— Exploration and Automation

Targeted Supplemental Instruction

Advising

— Notify students where/when appropriate (e.g., concurrent courses)

Reporting outputs and structures
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PLEASE FILL OUT AN EVALUATION FOR
THIS SESSION

November 14, 2:45 PM - 4:30 PM

Catalina C3
No Ratings Rate now >

DESCRIPTION

Evaluate this session

Predictive analytics are being utilized more and
more frequently in higher education as we aim to

determine ways we can better determine which
students are likely to be successful on our
campus. With holistic data becoming more
readily available and advanced statistical
techniques becoming more higher-education
friendly, it's clear that innovative uses of data are
not merely some passing fad. Yet, for campus
stakeholders, figuring out ways to start making
use of data and conducting predictive analyses

can be a daunting task. In this bootcamp, we will

work with live datasets together to determine

California Association
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