

### Jerry S. Fisher<sup>1</sup>, Vanessa Carlos<sup>2</sup>, Kyle Mobly<sup>2</sup>, Gabriel A. Radvansky<sup>1</sup>, & Jason F. Reimer<sup>2</sup> <sup>1</sup>University of Notre Dame

#### Introduction

- According to the Dual Mechanisms of Control (DMC) framework (e.g. Braver, 2012) two different modes of control can be used during the AX-CPT.
- *Proactive* mode: The cue is represented and actively maintained in working memory so that a cue-based response can be prepared for the probe.
- *Reactive* mode: Minimal attention is given to the cue. When the probe is presented, goal information contained within the cue must be reactivated.
- The present study explored whether there are differences in surface form, textbase, and event model representations in people who have adopted a more vs. less proactive mode of control during the AX-CPT.

#### Method

#### **Participants**

35 undergraduate students at California State University, San Bernardino

#### Stimuli and Procedure

- Participants first completed 212 trials of the AX-CPT. Approximately 77.5% were AX trials, and 7.5% were AY, BX, and BY trials.
- Participants read four narratives ranging from 516 to 703 words long (*M* = 621, *SE* = 79). Each narrative contained roughly 40 sentences presented one at a time on a computer screen. Reading was self-paced.
- Participants took the first recognition memory test.
- A week later, they took the second test online. Each recognition test included four different types of probe sentences to assess level of memory representation.

# **Cognitive Control and Narrative Memory**



• Main effect of test time, *F*(1, 33)=12.76, *MSE*=.01, *p*<.01 •  $M_{\text{Immediate}} = .58, M_{7 \text{ Dav}} = .48$ 

#### Design

• A 3 (Test Sentence Type: Surface Form vs. Textbase vs. Event Model) x 2 (Test Time: Immediate vs. 7 Days) x 2 (Level of Proactive Control: Low vs. High) mixed-design was used. Test sentence type and test time were varied within-subjects, while level of proactive control varied between-subjects.

#### Level of Proactive Control

- A Proactive Behavioral Index (PBI) score was calculated for each participant using RTs from AY and BX trials of the AX-CPT, PBI = (AY-BX)/(AY+BX)
- A median split on PBI scores was used to create the Low and High Proactive Control conditions
- People in the low proactive control condition had a significantly lower PBI (M = .10) than people in the high proactive control condition (M = .26), *t*(33)=-9.40, *p*<.001.
- The Sentence Type x Test Time x Proactive Control Level interaction was marginally significant, F(2,66) = 3.05, MSE = .015, p = .054

<sup>2</sup>California State University, San Bernardino

Marginally significant main effect of Test Time, F(1, 33)=3.81, *MSE*=.014, *p*=.06

Marginally significant test time effect for people with a low level of proactive control, t(17)=2.02, p=.06, but not for people with high proactive control, |t| < 1

#### Levels of Representation

Representation was assessed using the Schmalhofer and Glavanov (1986) procedure and the signal detection measure, A'.

#### **Study Sentence**

A prominent member of the Board was Phil Marks.

#### **Recognition Probes**

Verbatim (Surface Form) A prominent member of the Board was Phil Marks.

Paraphrase (Textbase) Phil Marks was a notable member of the Board.

Inference (Event Model) Phil Marks was an administrator at the CIA.

Wrong Marks himself was an amateur engineer.

# **→** 0.6 \**p* < .05

# References

106-113.

Schmalhofer, F., & Glavanov, D. (1986). Three components of understanding a programmer's manual: Verbatim, propositional, and situational representations. Journal of Memory and *Language*, 25(3), 279-294.

This research was funded in part by the CSUSB Learning **Research Institute.** 







Significant Test Time x Proactive Control Level interaction, *F*(1, 33)=10.92, *MSE*=.007, *p*<.01 Effect of test time was significant for people with a high level of proactive control, t(16)=3.60, p<.01, but not for people with a low level of proactive control, |t| < 1

#### **Summary and Conclusions**

Memory for information from surface form, textbase, and event model representations appears to depend on the level of proactive control that people use.

 Textbase representation was forgotten to a greater degree for lower levels of proactive control. In contrast, event model representation was forgotten to a greater degree for higher levels of proactive control.

 The way target information is processed in working memory may affect the nature and retention of long-term representations.

Braver, T. S. (2012). The variable nature of cognitive control: a dual mechanisms framework. Trends in Cognitive Sciences, 16,